NATIONAL EDUCATION POLICY-2020

Syllabus

Bachelor (Research) of Science (Geology) / Master of Science (Geology)

Geology

DEPARTMENT OF GEOLOGY FACULTY OF SCIENCE KUMAUN UNIVERSITY, NAINITAL

Curriculum Design Committee, Uttarakhand

S. No.	Name & Designation	
	Prof. N.K. Joshi	Chairman
1.	Vice-Chancellor, Sridev Suman Uttarakhand University, New Tehri	
2.	Vice-Chancellor, Kumaun University, Nainital	Member
2	Prof. Jagat Singh Bisht	Member
3.	Vice-Chancellor, Soban Singh Jeena University Almora	
4.	Prof. Surekha Dangwal	Member
	Vice-Chancellor, Doon University, Dehradun	
5.	Prof. O. P. S. Negi	Member
	Vice-Chancellor, Uttarakhand Open University, Haldwani	
6.	Prof. M.S.M. Rawat	Member
	Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	
7.	Prof. K. D. Purohit	Member
/•	Advisor, Rashtriya Uchchatar Shiksha Abhiyan, Uttarakhand	

	List of Semester-wise Titles of the Papers in Geology (Major Elective Subject)				
Year	Sem.	Course C ode	Paper Title	Theory / Practic al	Credits
			BACHELOR (RESEARCH) OF SCIENCE		
			Advanced Structural Geology	Theory	04
	I		Advanced Mineralogy	Theory	04
FOURT			Geochemistry & Geochronology	Theory	04
H YEAR			Geological Mapping	Field Training	04
IEAK			Practical	Practical	04
			Igneous Petrology	Theory	04
	II		Metamorphic Petrology	Theory	04
			Sedimentology	Theory	04
			Fuel Geology	Theory	04
			Practical	Practical	04
			MASTER OF SCIENCE (GEOLOGY)		
	ш		Geodynamics	Theory	04
	FIFTH		Tectonic Geomorphology	Theory	04
FIFTH YEAR			Micropalaeontology & Oceanography	Theory	04
1 12/11			Field & Laboratory techniques in Geology	Field Training	04
			Practical	Practical	04
	IV		Applied Groundwater Hydrology	Theory	04
	1		Advanced Remote Sensing & GIS	Theory	04
			Project/Research Oriented Dissertation	Dissertation	08
		-	Practical	Practical	04

PROGRAMME PREREQUISITES

Candidates who have passed the three-year B.Sc. examination from any recognized university including Kumaun University or equivalent examination of other universities with Geology as one of the major subjects in all the three years can apply for admission to the **Four Semester M.Sc. Programme** in Geology.

PROGRAMME INTRODUCTION

Geology is an ever advancing and most popular branch of pure and applied science amongst the students having keen interest and curiosity in understanding the origin, evolution, nature, composition, structure and processes of the Earth and its environs through time. The identification of minerals, rocks, and fossils provide insights into the age, composition, structure, and paleoenvironment of the Earth, and life that thrived on it through the geological ages. This leads to understanding the physical processes of the Earth's spatio-temporal evolution and the availability of its natural resources and reserves. A thorough knowledge on various domains of geology is, thus, immensely useful in not only enriching our knowledge about various physical and historical aspects of the Earth's evolution and dynamics, but also in judiciously utilizing its precious natural resources as well as efficiently preventing or mitigating disasters that could be caused as a result of the Earth's powerful endogenic and exogenic processes.

The programme offers essentially the fundamental and advanced knowledge and technical skills on various domains of geology. Students would study core and applied aspects of, and recent technological advances in the subject field. The curriculum of the programme is designed in such a stepwise manner that the student can derive benefit at any stage of the programme even if the entire course is not completed; it begins with basic essential knowledge and gradually covers advanced aspects of the subject. At the end of every academic year, the student would have good knowledge of some basic and applied aspects of the subject, and this will keep on growing as the students proceeds further with the subject course. At a later stage of the course, the curriculum provides the student with an opportunity of carrying out field and/or laboratory based project work leading to a dissertation in a specialized domain of geology, which is actually a training of making a professional geologist competent in generating, analyzing, and synthesizing the data, to resolve geoscientific problems.

Candidates desirous to pursue their career in the fields of geoscience, disaster management, natural resource assessment and management, civil engineering construction projects, natural environment conservation, and allied fields can choose the offered courses in geology.

PROGRAMME OUTCOMES (POs)

The curricula of the subject of geology are designed keeping in view the following programme outcomes:

program		
PO1	Enabling the students to understand the age, composition, structure, processes, and Evolutionary history of the Earth.	
PO2	Enabling the students to identify, locate, explore, judiciously exploit, and manage various Earth resources like minerals, fossil fuel and natural gas, coal, building stones, weathered Crust and soils, underground and surface water etc.	
PO3	Enabling the students to understand and assess the potential of natural processes in causing hazards and disasters.	
PO4	Enabling the students to understand such geological conditions that make the terrain prone to natural and anthropogenic hazards.	
PO5	Enabling the students to assess the suitability of terrain for various civil engineering constructions such as dams, reservoirs, bridges, tunnels, roads, railway lines, cable-cars, and buildings etc.	
PO6	Enabling the students to formulate and execute guidelines for safe developmental activities in diverse geological terrains.	
PO7	Motivating the students to take up higher studies and research to bringing out new knowledge yet to be understood the geological aspects of the Earth.	

Programme specific outcomes (PSOs):

Bachelor (Research) of Science (Geology)/ Master of Science (Geology)

Programme Specific Prerequisites: To acquire *Bachelor of Science* (*Geology*)/*Master of Science*, in Geology, a student should have obtained three-year *Bachelor of Science* and *one year Bachelor (research) of Science* from any recognized university. Student should have research-oriented aptitude for gaining the advanced knowledge in the subject field so that he/she can apply the gained knowledge to resolve related research and professional issues.

PSOs: Under this programme, the students will gain in-depth, advanced knowledge on core branches of geology, as well as newly developed branches and techniques in the subject field, with particular focus on the applied aspects of it.

After completing this programme, the students will have wide-spectrum, in-depth knowledge in the subject of geology, covering basic principles, gradual advancements, and classical and recent concepts. The students will be able to identify, analyze, and solve different types of geological problems, to ensure developmental activities and optimum harnessing of the earth resources without adversely affecting the geoenvironment or endangering the terrain stability, and to analyze the vulnerability of any terrain to various types of geo-hazards. It will also instill in them the quest for better understanding of the subject through incessant pursuance and research.

Year	Semester	Course type	Credits	Teaching hours
		Advanced Structural Geology	04	60
		Advanced Mineralogy	04	60
	Ι	Geochemistry & Geochronology	04	60
		Geological Mapping (Field training)	04	60
		Practical	04	60
First		Igneous Petrology	04	60
		Metamorphic Petrology	04	60
	II	Sedimentology	04	60
		Fuel Geology	04	60
		Practical	04	60
		Geodynamics	04	60
		Tectonic Geomorphology	04	60
	III	Micropaleontology & Oceanography	04	60
		Field & Laboratory techniques in Geology (Field training)	04	60
Second		Practical	04	60
Second	IV	Applied Ground water Hydrology	04	60
		Advanced Remote Sensing & GIS	04	60
		Project/ Research Oriented Dissertation	08	120
		Practical	04	60

COURSE STRUCTURE

Semester I

Paper I: Advanced Structural Geology

Course outcome: Deformation is a continuous process occurring within the rocks in different range so this course will provide a better concept regarding such processes by providing indepth information about stress and strain. It will also give a better understanding towards the mechanisms responsible for the formation of different geological structures.

Course	Content	Teaching
type, paper & Credits		hours
	Unit I: Concept of stress and strain. Stress-strain relationships of elastic, plastic and viscous materials. Two dimensional strain and stress analyses. Types of strain ellipsoids; their properties and significance.Mechanical properties of rocks and their controlling factors. Theories of rock failure.	15
Theory Advanced Structural Geology	Unit II: Mechanics of folding and buckling. Folds geometry and classification. Superimposed folds and their interference patterns. Causes and dynamics of faulting. Normal faults and strike – slip faults, thrust faults. Thin skinned deformation and decollement. Salt domes and diapers. Concept of balanced cross-sections.	15
6601059	(4) Unit III: Joints, rock cleavage and foliations; their origin, domain character, relationship with major structures and geological significance. 15 Lineations and linear structures; their origin, relationship with major structures and significance.	
	Unit IV: Brittle and ductile shear zones; their geometry, strain pattern, kinematics, products and significance. Rotation of structural elements. Concept of petrofabric analysis. Use of stereographic and equal area projections for representing different types of fabric.	5

Suggested Reading:

• Turner, F.J. and Weiss, L.E.(2012). Structural Analysis of Metamorphic Tectonites. Literary Licensing, LLC.

- Ramsay, J.G.(1967). Folding and Fracturing of Rocks. Mc Graw Hill.
- Davis, G.H.(1984). Structural Geology of Rocks and Region. John Wiley.
- Ramsay, J.G. and Huber, M.I. (1983 and 1987).Techniques of Modern Structural Geology, Vol. I & II. Academic Press.
- Price, N.J. and Cosgrove, J.W.(1990). Analysis of Geological Structures. Cambridge
- Univ. Press.
- Bayle,B.(1992).Mechanics in Structural Geology. Springer Verlag
- Robert, D. Hatcher(1994).Structural Geology: Principles Concepts and Problems (2nd Edition)
- Ghosh, S.K.(1995). Structural Geology: Fundamentals of Modern Development. Pergamon.
- Pollard, D.D. and Fletcher R.C.(2005). Fundamentals of Structural Geology Cambridge University Press.
- Moores, E.and Twiss, R.J. (1995). Tectonics. Freeman.
- Twiss, R.J.and Moores, E.M.(2006).Structural Geology Second Edition, W.H.Freeman.
- Passchier, C.w.and Treuw R.a.J.(2005).Microtectonics, Springr.
- RichardH.Groshong(2008).3D Structural Geology: A Practical Guide to Quantitative Surface and Subsurface Map Interpretation. Springer
- Ragan,D.M (2009). Structural Geology: An introduction to Geometrical Techniques. Cambridge, University Press.
- Fossen, H. (2010). Structural Geology, Cambridge University Press
- Lisle,R.J. (2004). Geological Structures and Maps: A Practical Guide, Third edition. Elsevier
- Marshak, S. and Mitra, G. (1988). Basic Methods of Structural Geology, Printice Hall.
- Hobbs, B.E., Means, W.D. and Williams, P.F. (1976). An outline of Structural Geology John Wiley and Sons. New York.
- Lisle R.J. and Leyshon, P.R (2004). Stereographic Projection Techniques for Geologists and Civil Engineers, 2nd edition, Cambridge University Press.
- Rowland, S.M., Duebendorfer, E.M. and Schiefelbein, I.M.(2007). Structural Analysis and Synthesis: A Laboratory Course in Structural Geology 3rd edition, Wiley-Blackwell.

Suggested Online Link:

• https://www.classcentral.com/course/swayam-structural-geology-14312.

Course outcome: Minerals are essential constituents of rocks and hence mineral science plays prime and vital role in the study of geology and material science. They may be valuable if occurring in form of precious and semi-precious minerals and gemstones, and are commonly used in the industries and other fields. This course will provide a better understanding on natural occurrence, identification, structure, and genesis of

Course	Cont	Teaching
type, Paper	ent	hours
& Credits		
Theory Advanced	Unit I: Structural classification of silicates; Study of following group of minerals with reference to chemical and structural formula, classification, atomic structure, chemistry, physical and optical properties, occurrences: Olivine, Garnet, Pyroxene, Amphibole, Mica, Feldspars, Feldspathoids, Silica and Al silicates, oxides and sulphides.	15
Mineralogy (04)	Unit II: Formation of Uni-axial and Bi-axial interference figures, Interferencecolors, Pleochroism and determination of pleochroic scheme, Interference figures and determination of optic sign; Extinction; Uniaxial and Biaxial indicatrix and dispersion in minerals.	15
	Unit III: Petrographical microscope; Mica, Gypsum and Quartz plates; Universal stage and their uses in the determination of optical properties of minerals.	15
	Unit IV: Application of spectroscopic techniques in mineralogy - Raman and Mossbauer spectroscopy, An Overview of environmental and radiation mineralogy; biomineralization and gemology.	15

Silicate and non-silicate minerals, and their applications in different fields.

- Battey, M.H.(1981). Mineralogy for students. Longman, London, New York.
- Berry, L.G. and Mason, B (1959). Mineralogy: concepts, descriptions, determinations, London Publication.
- Dana, E.S. and Ford, W.E.(2002). A textbook of Mineralogy (Reprint)
- Deer, W.A., Howie, R.A., and Zussman, J. (1992). An Introduction to the rock forming minerals , Harlow, Essex, England: New York, NY: Longman Scientific & Technical

- Sharma, R.S. and Sharma, A. (2014). Crystallography and mineralogy. Graduate Text Book Series, Geological Society of India, Bangalore.
- Gribble, C.D.(2005). Rutley's elements of Mineralogy, Springer.
- Klein, C. and Hurlbut, Jr. ,C.S.(1993). Manual of Mineralogy, John Wiley.
- Kerr, P.F.(1977).Optical Mineralogy, 4th Edition McGraw-Hill
- Putnis, Andrew(1992). Introduction to Mineral Sciences, Cambridge University Press.
- Winchell, A.N.(1962). Elements of Optical Mineralogy, John Wiley.
- Nesse, W. D. (2011). Introduction to Optical Mineralogy (Fourth Edition). Oxford University Press.

Suggested OnlineLink:

• <u>https://www.classcentral.com/course/swayam-subject-geology-paper crystallography-mineralogy-17820</u>.

Paper III Geochemistry & Geochronology

Course outcome: This course is designed to understand high-T and low-T geochemical processes that operate in the earth's deeper and near-surface environments. The major task of geochemists is to know the physical and chemical laws governing the abundance, distribution and migration of chemical elements from one sphere to another sphere of the Earth i.e. chemical differentiation of the Earth. Dating the geological materials are utmost important for arranging the geological events in chronological order.

Course type, paper &	Content	Teaching h ours
Credits		
Theory Geochemistry & Geochronology (4)	 Unit I: Composition of Earth and its constituents (Crust, mantle and core); Ionic and co- ordination number; Rules of ionic substitution, coupled substitution; Distribution coefficient: Captur admission and camouflage, Geochemical classification of elements; Behaviour of major and trace including rare earth elements during magmatic crystallization. 	15
	Unit II: Near-Earth surface geochemical 15 environment: Eh-pH diagram; Principle of chemical mass balance and rock- cycle; Chemical weathering of minerals and rocks.	
	Unit III: Radiogenic isotopes in geochronology and petrogenesis: Rb-Sr, Sm-Nd, U-Pb	15
	isotopic system.	
	Unit IV: Stable isotopes geochemistry, Fission Track (FT) and OSL dating techniques; Dendrochronology and Lichenometry.	15

- Allegre, C.J. and Michard, G. (1974). Introduction to Geochemistry, Reidel, Holland.
- Evans, R.C.(1964). Introduction to Crystal Chemistry, Cambridge Univ.Press.
- Faure,G.(1998). Principles and applications of geochemistry ,2nd Edn., Prentice Hall, New Jersy, 593p.
- Faure,G.(1986). Principles of Isotope Geology, 2nd Edn., John Wiley.
- Albarde Francis(2003).Geochemistry-Introduction.CambridgeUniversityPress.
- Misra, K.C.(2012).Introduction to Geochemistry: Principles and Applications, Wiley- Blackwell.

- Alan P. Dickins (2005). Radiogenic Isotope Geology, Cambridge University Press
- Hoefs, J.(1980).Stable Isotope Geochemistry, Springer and Verlag.
- Gunter Faure(1977). Principles of Isotope Geology by John Wiley & Sons Ltd.
- Krauskopf, K.B.(1967). Introduction to Geochemistry, Mc Graw Hill.
- Mason, B. and Moore, C.B. (1991). Introduction to Geochemistry, Wiley Eastern.
- Rollinson, H.R. (1993). Using geochemical data : Evaluation, Presentation, Interpretation, Longman, U.K.
- Gill, R. (2015) Chemical Fundamental of Geology, Wiley Blackwell

Suggested Online Link:

• <u>https://www.classcentral.com/course/swayam-geology-geochemistry-14083</u>

Paper IV: Geological Mapping

Course outcome: Geology is field and observational science. Geo-scientific
hypothesis is framed in the field that can be tested through field data and
laboratory investigations. This course will enable the students to explore
practical aspect of geology such as preparation of geological maps, cross-
section, and reconnaissance and detailed surveys for georesource exploration
and environmental purposes etc.

Course type, paper & Credits	Content	Teaching hours
Field training	The paper will be based on geological field training, in which the students will be trained on the following aspects:	120
Geological Mapping (04)	 Geological mapping techniques, understanding the interaction between topography and geologic structures. Basics of field data collection, analyses, interpretation, and geological report writing. (Note: Marks will be evaluated on the basis of student's field training report.) 	

Practical

Practical	Section A: Advanced Structural Geology: Study of naturally deformed rocks in hand specimens, Geometrical analysis of folds and faults. Preparation and interpretation of geological maps, Applications of stereographic and equal area projections, Strain analysis using oriented thin sections.	
(04)	Section B: Advanced Mineralogy: Study of physical and optical properties of important rock forming minerals; Determination of An	120
	content of plagioclase feldspars; Determination of elongation and optic sign of minerals; Determination of Pleochroism and absorption schemes.	
	Section C: Geochemistry & Geochronology: Construction of geochemical variation diagrams (Spider diagrams; Harker's variation diagrams; addition-substraction diagrams); Calculation of stoichriometric formula from chemical analysis of minerals.	

Semester II

Paper I: Igneous Petrology

Course outcome: This course will provide in-depth knowledge about the origin and evolution of igneous rocks in diverse tectonic environments through a number of major and subsidiary magmatic processes. The petrogenesis of igneous rocks can be very well demonstrated in the light of modern phase equilibria experimental works. Igneous rocks, also called primary rocks, are most abundant and were formed throughout the Earth's evolutionary history that essentially make-up the continents as a stable platform to live on it. Students will come to know about the igneous processes and world class examples of igneous provinces, complexes and suites of India.

C	Contract.	T
Course	Content	Teaching
type, paper		hours
& Credits		
	Unit I: Magma generation in the mantle, their nature and evolution; Magmatic processes: Partial melting, fractional crystallization, magma mixing, assimilation, liquid immiscibility, and other subsidiary processes.	15
Theory Igneous Petrology	Unit II: Petrography and genetic interpretation of igneous textures in terms of rate of nucleation and crystal growth; IUGS classification schemes and nomenclature of igneous rocks: Ultramafic, mafic and felsic igneous rocks; total-alkali- silica (TAS)classification of volcanic igneous rocks.	15
(04)	Unit III: Study of phase equilibria in binary (Diopside-Anorthite,Forsterite-Silica, Nepheline- Silica, Forsterite-Fayalite; Albite-Anorthite; Orthoclase-Albite) and ternary (Diopside- Nepheline-Silica,Diopside-Albite-Anorthite, Anorthite-Forsterite-Silica;Fayalite-Leucite-Silica, Orthoclase-Albite- Silica) silicate systems in the light of modern experimental works.	15
	Unit IV: Petrogenesis and tectonic setting of major igneous rocktypes and suites: Ultramafic rocks, komatiite, lamprophyres, kimberlite, ophiolite, flood basalt, anorthosite, Tonalite-Trondhjemite- Granodiorite(TTG), granitoids, alkaline rocks and carbonatites with special reference to Indian examples.	15

Suggested Reading:

• Phillpotts, A.R.(1994). Principles of Igneous and Metamorphic Petrology, Prentice Hall of India.

- Best, M.G.(2003). Igneous and Metamorphic Petrology, 2nd Edition, Blackwell.
- Bose, M.K.(1997). Igneous Petrology, World Press, Kolkata.
- Cox,K.G., Bell, J.D. and Pankhurst, R.J. (1979). Interpretation of Igneous Rocks, Unwin Hyman, London
- Frost,B.R.and Frost,C.D.(2014). Essentials of Igneous and Metamorphic Petrology, Cambridge University Press
- McBirney, A.R.(1993). Igneous petrology. Jones & Bartlet Publication.
- LeMaitre, R.W.(2002). Igneous Rocks: A Classification and Glossary of Terms, Cambridge
- UniversityPress.
- Wilson, M. (1993). Igneous Petrogenesis, Chapman and Hall, London.
- Kumar,S, and Singh,R.N.(2014). Modelling of Magmatic and Allied Processes. Springer, Switzerland.
- Powell,R.(1978).Equilibrium thermodynamics in Petrology : An Introduction, Harper & Row Publishers, London.
- Winter, J.D. (2001). An introduction to Igneous and Metamorphic Petrology, Prentice Hall.
- Wood, B.J. and Fraser, D.G. (1976). Elementary Thermodynamics for Geologists, Oxford University Press, London.
- Gill, R. (2015). Chemical Fundamental of Geology, Wiley Blackwell
- Hibbard, M. J. (1995). Petrography to petrogenesis. MacMillan USA

Suggested Online Link:

- <u>https://www.classcentral.com/course/swayam-petrology-14084</u>
- E-pathshala.<u>https://epgp.inflibnet.ac.in/</u>

Paper II Metamorphic Petrology

Course outcome: This course will allow students to gain in-depth knowledge about the origin of metamorphic rocks from different protoliths. The identification of structures, textures and mineral assemblages provide information on involved reactions under different pressures and temperature regimes, and its implication on understanding the metamorphic evolutionary history and geodynamics of mobile belts thorough time. Some noted Indian

examples will be demonstrated.

examples		
Course type,	Content	Teaching
paper &		hours
Credits		
Theory Metamorphic Petrology (04)	 Unit I: Mineralogical Phase rule of open and closed systems; Types of metamorphism; Textures of regional and contact metamorphic rocks; Deformation and metamorphism; Nature and types of metamorphic reactions; Concept and classification of metamorphic facies; Facies series; Graphical representation of minerals in ACF, AKF, AFM and A'F'M' diagrams; Time relation between phases of Deformation and metamorphic crystallization. Unit II: Description of each facies of low pressure, medium to high pressure and very high pressure with special reference to characteristics minerals, subdivisions into zones / sub- facies, mineral assemblages, metamorphic reactions of metamorphism. Introduction to Ultra-high temperature and Ultra-high pressure metamorphism. Metamorphism of shale, mafic and calcareous rocks. 	15
	Unit III: Isograds and Reaction Isograds; Schreinmakers rule and construction of Petrogenetic grids; Metamorphic differentiation; Anatexis and origin of migmatites; Paired metamo rphic belts	15
	Unit IV: Gibb's free energy; Entropy; Enthalpy; Clausius- Clapeyron equation; Geothermobarometry; Pressure-Temperature- Time (P-T-t) paths.	15

Suggested Readings:

• Turner, F.J.(1980). Metamorphic Petrology, Mc Graw Hill, New York.

- Yardlley, B.W.D.(1989). An introduction to Metamorphic Petrology, Longman Scientific and Technical, New York.
- Yardley, B.W.D., Mackenzie, W.S. and Guilford, C.(1995). Atlas of Metamorphic Rocks and their textures, Longman Scientific & Technical, England.
- Philopotts, A.R. (1994). Principles of Igneous and Metamorphic Petrology, Prentice Hall.
- Kretz,R.(1994). Metamorphic Crystallization, John Wiley.
- Bucher, K. and Frey,M.(2002). Petrogenesis of Metamorphic Rocks (7th Rev.Ed.), Springer–Verlag.
- Powell,R.(1978). Equilibrium thermodynamics in Petrology : An Introduction,
- Harper and Row Publ., London.
- Wood,B.J. and Fraser,D.G.(1976). Elementary Thermodynamics for Geologists, Oxford University Press.
- Rastogy, R.P. and Mishra, R.R. 1993: An Introduction to Chemical Thermodynamics, Vikash Publishing House.
- Spry,A.(1976).Metamorphic Textures, Pergamon Press.
- Sharma,R.S.(2016).Metamorphic Petrology: Concepts and Methods, Geological Society of India
- Winter, J.D. (2001). An introduction to Igneous and Metamorphic Petrology, Prentice Hall.
- Winkler,H.G.F.(2013).Petrogenesis of Metamorphic rocks, Springer New York, Ebook.
- Barker, A.J. (1998). Introduction to Metamorphic textures and Micro-textures,
- Miyashiro, A. (1994). Metamorphic Petrology, Taylor & Francis.

Suggested Online Link:

- https://www.classcentral.com/course/swayam-petrology-14084
- <u>https://www.classcentral.com/course/swayam-geology-metamorphic- petrology-thermodynamics-22994</u>
- E-pathshala.<u>https://epgp.inflibnet.ac.in/</u>

Paper III Sedimentology

Course outcome: The course in-depth knowledge about the types and origin of sedimentary rocks, and source-to-sink sedimentary processes. It emphasizes upon the modern concepts of palaeo-environmental analysis, as well as provenance determination of sedimentary rocks. The course content deals with all the essential aspects required in exploring oil and natural gas, underground water, mechanically concentrated mineral deposits (placer deposits), and building stones.		
Course type,	Conten t	Teaching
paper &		hours
Credits		
	Unit I: Sedimenatary texture, textural parameters and their significance. Textural and compositional maturity. Fluid flow concepts, sediment transport, bedforms and sedimentary structures. Allogenic and autogenic controls on sedimentation. Palaeocurrent analysis and its significance.	
	Unit II: Concept of sedimentary facies, facies	15
Theory Sedimentology (04)	associations, and facies model. Characteristics, processes, and facies of fluvial, lacustrine, deltaic, esturine, tidal flat, lagoonal, barrier beach, and deep-sea sedimentary environments.	
	Tectonic classification of sedimentary basins.	15
	UnitIII: Typesandpetrogenesisof conglomerates, sandstones, and argillites. Problem of greywacke. plate tectonics and sandstone composition. Classification and genesisof limestonesanddolomites. Evaporites: Gypsum and anhydrite.	
	Unit IV: Digenesis–Physical and chemical	15
	processes. Diagenetic stages and regimes Evidences of diagenesis in sandstones, mud rocks and carbonate rocks. Provenance of sedimentary rocks. Provenance reconstruction of sandstones through petrographic, petrofacies, and heavy mineral analyses.	

- Blatt,H., Middleton, G.V.and Murray,R.C.(1980).Origin of sedimentary rocks. Prentice Hall Inc.
- Collins, J.D. and Thompson, D.B. (1982). Sedimentary structures. George Allen and Unwin, London.
- Lindholm,R.C.(1987).A practical approach to sedimentology.Allen and Unwin, London.

- Miall,A.D.(2000).Principles of basin analysis, Springer-Verlag.
- Pettijohn, F.J.(1975). Sedimentary rocks (3rdEd), Harper and Row Publ., NewDelhi.
- Reading,H.G.(1997).Sedimentary environments and facies, Blackwell Scientific Publication.
- Reineck,H.E. and Singh,I.B.(1973).Depositional sedimentary Environments, Springer-Verlag.
- Selley, R.C.(2000). Applied Sedimentology, Academic Press.
- Tucker, M.E. (1981). Sedimentary Petrology: An introduction. Wiley and sons, New York.
- Tucker, M.E. (1990). CarbonateSedimentology, Blackwell Scientific Publication.

Paper IV Fuel Geology

Course outcome: This course will enable students to explore various fossil fuels including coal, petroleum and gas regarding their formation and mode of occurrence. The prospecting and exploration techniques of radioactive minerals will also help students to enhance their knowledge about nuclear energy. All these sources form base for a country's development so it will be beneficial for the students as they can contribute for its development by choosing a carrier related to fuel energy.

Course type, paper & Credits	Content	Teaching hours
Fuel	Unit I: Introduction: Sources of energy, Coal Geology: Introduction, origin and distribution of coal, Bio-chemical and dynamo-chemical changes in coal formationGrade and Rank of coal Macroscopic and Microscopic constituents, Macerals and micro-lithotypes, Physical and chemical properties. Indian classification.	
Geology (4)	Unit II: Petroleum Geology: Composition and physical properties of petroleum, Origin of Petroleum; Kerogen and their types. Migration of natural hydrocarbon. Petroleum Reservoir: source rock, reservoir rock, cap rocks. Traps: Structural, stratigraphic and combination traps.	15
	Unit III: Distribution of Oil and Natural gas, and Coal in India. Coal fields and Petroliferous basins of India.	15
	Unit IV: Nuclear Fuel: Minerology, Geochemistry, mode of occurrence; Distribution of radioactive minerals in India; Radiogenic waste disposal—geological constrains. Gas- hydrates. Elementary idea about non- conventional energy resources	15

- Barker, C. (1996): Thermal Modeling of Petroleum Generation, Elsevier Science.
- Jahn,F.,Cook,M.and Graham,M.(1998): Hydrocarbon Exploration and Production, Eslevier Science.
- Makhous, M. (2000): The Formation of Hydrocarbon Deposits in North African Basins, Geological and Geochemical Conditions, Springer-Verlag.
- North, F.K. (1985): Petroleum Geology, Allen Unwin. Selley, R.C. (1998): Elements of petroleum geology, AcademicPress.
- Tissot,B.P.andWelte,D.H.(1984): Petroleum formation and occurrence, Springer-Verlag.

- Chandra, D., Singh, R.M. and Singh M.P.,(2000): Text book of coal (Indian context), Tara Book Agency, Varanasi.
- Scott, A.C., (1987): Coal and coal bearing strata: Recent Advances, BlackwellScientifics Publications.
- IsabelSuárez RuizJohnCrelling .(2008). Applied Coal Petrology: The Role of Petrology in Coal Utilization, Academic Press.
- Taylor, G.H., Teichmuller, M., Davis, A., Diessel, C.F.K., Littke, R. and Robert P., (1998).Organic Petrology, Gebruder Borntraeger, Stuttgart.
- Singh, M.P. (1998). Coal and organic Petrology. Hindustan Publishing Corporation, NewDelhi.
- Stach, E., Mackowsky, M-Th., Taylor, G.H., Chandra, D., Teichumullelr, M. and Teichmulle, R.(1982). Stach Textbook of Coal petrology. Gebruder Borntraeger, Stuttgart.
- Holson, G.D. and Tiratso, E.N.(1985). Introduction to Petroleum Geology . Gulf Publishing, Houston, Texas.
- Tissot,B.P. and Welte,D.H.(1984). Petroleum Formation and Occurrence, Springer–Verlalg.
- North, F.K. (1985). Petroleum Geology. Allen Unwin.
- Selley, R.C.(1998). Elements of Petroleum Geology. Academic press.
- Durrance, E.M. (1986). Radioactivity in Geology-principles and application. Ellis Hoorwool.
- Dahlkamp, F.J. (1993). Uranium Ore Deposits. Springer Verlag.
- Boyle,R.W.(1982).Geochemical prospecting for Thorium and Uranium deposits, Elsevier.

Suggested Online Link

- <u>https://www.my-mooc.com/en/mooc/geoscience-earth-its-resources-delftx-geo101x/</u>.
- <u>https://www.mooc-list.com/course/oil-gas-industry-operations-and-markets-coursera</u>

Practical

Practical (04)	 Section A : Igneous Petrology: Megascopic and microscopic studies of major igneous rock types. CIPW normative mineral calculation. Introduction to software: Sinclass, GCDkit, MELT, R-Crust. Section B: Metamorphic Petrology: Study of metamorphic rocks of different metamorphic facies in hand specimens.Calculation of ACF, AKF, AFM and A'F'M values from the given chemical data / structural formula of minerals and their graphical representation. Study of metamorphic rocks in thin sections with reference to texture/structure, time relation between phases of deformation and metamorphic crystallization, mineral association, parent rock, metamorphic facies/sub- facies/zones to which rock can be assigned and representation of assemblage in ACF, AKF, AFM and A'F'M' diagrams. Estimation of pressure and temperature from important models of Geothermobarometry. 	120
	 Section C: Sedimentology: Detailed study of clastic and non- clastic rocks in hand specimen. Study of sedimentary structures hand specimen inform-process context. Petrography of important rock types with emphasis on depositional setting, provenance and diagenesis. Heavy mineral identification with regard to their significance in provenance interpretation. Study of important facies models. Section D: Fuel Geology : Study of hand specimen of 	
	coal, Reserve estimation of coal.	

Semester III Paper I Geodynamics

Course outcome: This subject covers the dynamic processes of the solid earth which is responsible for large-scale tectonics and evolution of the earth through deep time. The course introduces advanced topics in Plate Tectonics that have shaped the earth, its deep interior and processes such as earthquakes, volcanoes, lithosphere and asthenosphere interaction vis-á-vis mantle dynamics; Evolution of continental-oceanic crust and orogenic belts and their relationship to continental amalgamation and fragmentation.

Course type, paper & Credits	Content	Teaching hours
	Unit I: Planetary evolution of the earth and its internal structure. Heterogeneity of the earth crust. Major tectonic features of the Oceanic and Continental crust. Isostacy and epeirogeny.	15
Theory Geodynamics (04)	Unit II: Gravity and magnetic anomalies and heat flow patterns at Mid- Ocean ridges, deep sea trenches, continental shield areas and mountain chains. Continental drift-geological and geophysical evidence, mechanics, objections, present status. Nature of plate margins.	15
	Unit III: Palaeomagnetism, magnetostratigraphy seafloor spreading, mechanics of plate motion and Plate Tectonics. Island arcs, oceanic islands, hotspots and plume tectonics. Seismic belts of the earth vis-á-vis plate movements. Concept of seismic tomography.	15
	Unit IV: Orogeny, geodynamic evolution of Indian cratons and mobile belts. Structure and origin of the Himalaya. Metallogeny in relation to plate tectonics. Neotectonic Movements concepts and evidence.	15

- Valdiya, K.S.(1984). Aspects of tectonics, Tata McGraw-Hill Pub. Co., NewDelhi.
- KeareyP., Klepeis,K.A. and Vine, F.J.(2009).Global Tectonics, John Wiley & Sons, Ltd., Publication. E-book available
- Valdiya, K.S. (2010). Making of India. Macmillam Publishers, India.
- Windley, B.F. (1984). EvolvingContinents (2ndedition), Wiley–Blackwell publisher.

- Condie,K.C.(1976).PlateTectonics,1stedition,ElsevierScience.Ebookavailable.
- Condie, K. (1989) Plate Tectonics and Crustal Evolution. Pergamon Press, Oxford, 476 p.
- Cox, A. and Hart, R.B. (1986). Plate Tectonics, Blackwell Publishing.
- Moores, E. and Twiss, R.J.(1995). Tectonics, Waveland Press Freeman.
- Keary, P. and Vine, F.J.(1990). Global Tectonics-Balckwell Publishing.
- Storetvedt, K.N.(1997).Our Evolving Planet: Earth's History in New Perspective-Bergen(Norway),Alma Mater Fortag
- Valdiya,K.S.(1998).Dynamic Himalaya-Universal Press, Hyderabad12.
- Summerfield, M.A., 2000: Geomorphology and Global Tectonics-Springer Verlag
- Turcotte, D.L and Schubert, G. (2002). Geodyanamics, second edition., Cambridge University Press.

Suggested Online Link:

- <u>https://www.mooc-list.com/course/planet-earth-and-you-coursera</u>
- https://www.mooc-list.com/course/dynamic-earth-course-educators-coursera

Paper II: Tectonic Geomorphology

Course outcome: This course pertains to studying the active terrain deformation in response to activities on structural discontinuities of the earth, and/or climatic fluctuations, and/or isostatic adjustments of the earth. The course will enable the students to indentify active tectonic structures of an area and measure extent of activities of them on the basis of their geomorphic signature. Knowledge on such aspects of an area are quite useful in analyzing the hazard proneness and vulnerability of any area, as well as assessing the safety of any geo-

Engineering project therein.

Course type,	Content	Teachin
paper		g hours
& Credits		
	Unit I: Definition and scope of tectonic	15
	geomorphology .Landscape evolution. Davis',	
	Penck's, and Hack's models of landscape	
	evolution. Modern concepts of landscape	
	evolution. Concept of Form-Process	
	relationship inLandscape evolution.	
	Unit II: Geomorphic Markers of active	15
	tectonics: Planar and Linear. Landforms of	
	active strike-slip faults, normal faults, reverse	
	faults and folds. River response to active	
Theory	tectonics. Sudden (coseismic) versus gradual	
Tectonic	modifications in river systems. Tectonic	
Geomorphology	modifications of alluvial and bedrock-channel e	
(04)	drivers: longitudinal profiles, river pattern,	
	sinuosity, drainage patterns and drainage	
	anomalies. Effects of base level.	
	Unit III: Geomorphic Indices of active tectonics	15
	– Morphometric analysis : mountain-front	
	sinuosity, hypsometric curve and hypsometric	
	integral, stream- length gradient index, and	
	valley-floor width to valley height ratio, basin	
	elongation ratio, basin shape, relief ratio,	
	drainage basin asymmetry factor, transverse	
	topography symmetry factor.	
	Unit IV: Introduction to geodesy. Fundamentals 15	
	of ground- based and space geodetic	
	techniques of measuring active tectonic	
	deformations: Alignment arrays, Trilateration	
	nets, Dry-tiltnets, electronic distance	
	measurement (EDM) systems, Very long beam	
	interferometry (VLBI), Radar Interferometry,	
	and Global Positioning System(GPS)	

- Burbank, D.W. and Anderson, R.S.(2011). Tectonic Geomorphology 2ndEdition. Blackwell Science.
- Burbank, D.W. and Anderson, R.S. (2001). Tectonic Geomorphology 1stEdition. Blackwell Science.
- Keller, E.A. and Pinter, N. (1996). Active tectonics : Earthquakes, Uplift, and Landscape. Prentice Hall
- Bull, William.(2009).Tectonically active landscapes. Wiley-Blackwell
- Schumm, S.A, Dumont, J.F. and Holbrook, J.M. (2000). Active tectonics and alluvial rivers. Cambridge University Press.
- Bull,W. (2007). Tectonic Geomorphology of Mountains : A new approach to palaeoseismology. Blackwell Publishing.
- Small, R.J. (1978). Study of Landforms: A Textbook of geomorphology (2ndEdition), Cambridge University Press.
- Halis, J.R. (1983). Applied Geomorphology.
- Sharma, H.S.(1990). Indian Geomorphology. Concept Publishing Co. New Delhi.
- Thornbury,W.D. (2004). PrinciplesofGeomorphology.2nd edition CBS Publication.
- Kale, V.S. and Avijit Gupta(2010). Introduction to geomorphology. University Press
- Bloom,A.L.(2011).Geomorphology : A systematic analysis of Late Cenozoic Landforms 3rd Edition. Rawat Publications.
- Condie, Kent. C.(1989).Plate Tectonics and CrustalEvolution.3rd Edition. Butterworth-HeinemannLtd.
- Windley, B.(1995). The Evolving Continents. 3rd Edition Wiley-Blackwell.
- Davies, G.F. (1999). Dynamic Earth : Plates, Plumes and Mantle Convection. Cambridge University Press.
- Keller, E.A and Pinter, N (2001). Active Tectonics. 2nd Edition. Pearson Publications.
- Kearey, P., Klepeis, K A and Vine, F.J (2009).Global Tectonics 3rd Edition. Wiley-Blackwell.
- Burbank, D.W. and Anderson, R.S. (2016). Tectonic Geomorphology. Wiley India.

Paper III: Micropalaeontology & Oceanography

Course outcome: This course will enable students todevelop skills regarding modern techniques and methods employed in micropalaeontology and marine life. It will provide idea about the different Ocean Drilling Programs. The students will gain anadvanced knowledge on applications of microfossils and will be able to interpret atmospheric and oceanic circulation systems so as to analyze their driving forces .This all will also help them to evaluate a relationship between ocean chemistry and climate change.

Course type, paper & Credits	Content	Teachin g hours
Theory	Unit I: Definition and scope of the subject; Relationship of micropaleontology with ocean sciences; Modern field and laboratory techniques in the study of microfossils (collection, sampling and processing techniques, scanning electron microscopy and mass spectrometry); Concepts of micro paleontological indicators useful in understanding geological evolution, environmental changes and biostratigraphic	15
Micro-	correlation.	
palaeontology & Oceanography (04)	Unit II: Morphology, geological distribution, evolution, significance and applications of organic-walled microfossils (acritarchs, dinoflagellates, spores and pollens) and inorganic walled microfossils (Foraminifers, Ostracoda, Calcareous Nannofossils, Radiolaria, Diatoms, silicoflaglets and Conodonts). Application of Micropaleontology in hydrocarbon exploration, paleoceanography, paleoclimatology and tracinghistory of marine pollution. Interpretaion of seafloor tectonism from micro-paleontological evidence.	
	Unit III. History and development of Oceanography. Methods of measuring properties of seawater (horizontal and vertical distribution of temperature, salinity, dissolved gases in sea water; density stratification in oceans). Depositional processes and distribution of Calcareous oozes, silicious oozes, and pelagic sediments in oceans. Ocean drilling Programmes (DSDP, ODP, IODP) and its major accomplishments.	15

-		
	Unit IV: Ocean circulation, surface circulation	15
	and concept of mixed layers.Coriolis force and	
	Ekman spiral Thermocline and Pycnocline,	
	concept of upwelling and downwelling of ocean	
	water. ElNino, La Nina. Deep Ocean	
	circulation. Formation of bottomwater,	
	watermasses of the world ocean and sea	
	sediments.	

- Garrisson T and Ellis, R. (2016). Oceaanography : An invitation to marine Science. National Geographic Learning.
- Trujillo,A.P and Thurman, H.V. (2011). Essentials of Oceanography. Prentice Hall (10th edition)
- Armstrong, and Brasier, M. (2005). Microfossils. Blackwell Publishing (2nd edition)
- Saraswati, P.K.and Srinivasan, M.S.(2016).Micropaleontology : Principles and Applications, Springer.
- Arnold(2002). Quaternary Environmental Micropaleontology (Ed. Simon K.Haslett), Oxford
- Haq B.U.and Boersma, A.(1998).Introduction to Marine Micropaleontology, Elsvier.
- Pinet, P.R.(1992): Oceanography: An introduction to the Planet Oceanus, West Pub,Co
- Bignot,G.,Grahm and Trottman (1985). Elements of Micropaleontoogy, London.
- DavidTolmazin(1985).Elements of Dyanamic Oceanography, Allen and Unwin
- GrantGross,M.(1977).Oceanography; A view of the Earth, Prentice Hall.
- JohnHoughton(1997).Global Warming, Cambridge Univ. Press.
- Jones, T.P. and Rowe, T.P. (1999). Fossil plants and spores, Modern Techniques, Geological Soc. Of London.

Paper IV: Field & Laboratory techniques in Geology

E

Course outcom	me: Geology is field and observational science. Geo	o-scientific	
hypothesis	hypothesis is framed in the field that can be tested through field data and		
laboratory	investigations. This course will enable the students	to explore	
practical a	aspect of geology such as preparation of geological m	aps, cross-	
section, ar	nd reconnaissance and detailed surveys for georesource of	exploration	
and enviro	onmental purposes etc.	_	
Course	Content	Teaching	
type, paper		hours	
& Credits			
	The paper will be based on training on geological	120	
Field and	field, laboratory techniques, andvarious		
Lab training	instruments used in geological analysis. During		
Field &	fieldwork the students will be exposed to terrains		
	of different geological characteristics, different		
Laboratory	types of mines, natural resource exploration sites,		
techniques	various types of geohazard sites. Students will		
in Geology	prepare geological reports on the basis of their		
	training, which will be evaluated for the marking.		
(4)	(Note: Marks will be evaluated on the basis of		
	student's field training report.)		

Practical

	Section A: Tectonic Geomorphology: Exercises on	120
	mapping of Tectonic geomorphological features	
	and computation of geomorphic indices, using	
Practical	map and remote sensing data.	
	Section B: Micropaleontology and Oceanography :	
(04)	Surface and Deep Ocean circulation, Upwelling,	
	Indian Monsoon circulation. Techniques of	
	separation of microfossil from the matrix. Study of	
	representative genera of microfossils, Preparation of	
	bio-zonation charts.	

Semester IV Paper I Applied Groundwater Hydrology

Course outcome: This course has a direct relationship to society as it provides a deep information regarding the most important factor required for a life to sustain i.e water. Groundwater is the purest form of water that can be yielded from rocks. It provides a better knowledge about its origin, prospecting and extraction. It explains the laws Governing ground water flow and various methods of ground water exploration.

	f ground water exploration.	
Course type,	Content	Teaching
paper &		hours
Credits		
	Unit I: Ground Water origin, type and	15
	occurrence, renewable and non-renewable	
	ground water resources. Sub surface movement	
	and Concept of depth to water level and water	
	table contour maps. Water table and	
	piezometric surface. Water bearing properties of	
	rocks and aquifer parameters : porosity,	
T1	permeability, specific yield, specific retention,	
Theory	hydraulic conductivity, transmissivity, intrinsic	
Applied	permeability, storage coefficient, storativity,	
Groundwater	specific storage. Introduction to hydrogeology of	
	India, and the groundwater provinces of India.	
Hydrology	Unit II: Theory of groundwater flow, numerical	15
(04)	solutions for steady state linear groundwater flow	10
(04)	in confined and unconfined aquifers and Dupuit's	
	assumption for unconfined flow. Numerical	
	solutions for steady state radial flow to a well in	
	confined (Thiem's equation) and unconfined	
	aquifers (Dupuit's equation). Numerical solutions	
	for unsteady state groundwater flow condition.	
	Evaluation of aquifer parameters of confined	
	Aquifer using Theis and Jacob methods.	
	Unit III: Quality of Groundwater: Chemical	15
	characteristics of ground water in relation to	-
	various uses-domestic, irrigation and industrial	
	purposes. Groundwater contamination and	
	pollution from natural (geogenic) and	
	anthropogenic sources. Graphical presentation of	
	water quality data. Saline water intrusion in	
	aquifers and its prevention. Ground water quality	
	in different provinces of India	
	Unit IV: Geological and geophysical methods of	15
	ground water exploration. Geologic and	
	geomorphic controls on groundwater.	

- Todd,D.K.(1980).Ground water Hydrology-John Wiley.
- Davis, S.N. and DeWiest, R.J.M. (1966). Hydrogeology-John Wiley.
- Freeze, R.A. and Cherry, J.A. (1979). Ground Water-Prentice Hall.
- Fetter, C.W. (1990). Applied Hydrogeology-Merill Publishing.
- Ragunath, N.M. (1982). Ground Water-Wiley Eastern.
- Karanth, K.R.(1987).Groundwater Assessment-Development and Management- Tata McGraw Hill.
- Alley, W.M.(1993). Regional Ground Water Quality-VNR, NewYork.
- Subramaniam, V. (2000). Water-Kingston Publication, London.
- Hiscock,K.M.andBense,V.F.(2014).Hydrogeology: Principles and Practice 2nd Edition, Wiley-Blackwell.
- Raghunath, H.M. (1983). Ground Water, Viley Eastern Ltd., Calcutta.
- Driscoll,F.G.(1988).Groundwater and Wells, UOP, Johnson Div. St. Paul. Min.USA.

Paper II Advanced Remote Sensing & GIS

Course outcome: This course pertains to recent technologies of Remote Sensing and Geographical Information System (GIS). The course introduces various types of remote sensing data in different ranges of the electromagnetic spectrum, and the basic concepts and potential of GIS in geological investigations. It develops skills in students for interpreting visual and digital remote sensing image from different spectral bands, and Use them to understand the various physical processes operating on earth's surface through integration of other sources' data in a GIS.

Course type,	Cont	Teachi
paper &	ent	ng
Credits		hours
	.Unit I: Atmospheric scattering and absorption; Concepts of Optical, NIR, SWIR, TIR and RADAR remote sensing; Satellite and Aerial remote sensing platforms; Spectral Reflectance curves of soil, water and vegetation.	15
Theory Advanced Remote Sensing &	Unit II: Types and characteristics of sensors. Concepts of mono- band, multispectral and hyperspectral remote sensing. Basics of optical, thermal and microwave remote sensing. Basic concept of LiDAR. Characteristics of IRS sensors.	15
GIS (04)	Unit III: The structure of Digital Image. Conceptual aspects of Digital Image Processing. Basic processes of image rectification, enhancement and classification. Definition and components of Geographic Information System (GIS). Raster and vector data formats. Basic knowledge about data acquisition, manipulation, analyses and representation In GIS.	15
	Unit IV: Application of remote sensing and GIS in geomorphological investigations, tectonic investigations, lithological mapping, groundwater exploration, mineral exploration, Oil & Gas exploration and geohazard management.	15

- Lillesand, T.M., Kiefer, R.W. and Chapman, J. (2015): Remote Sensing and Image Interpretation, 7thEdition. Wiley
- Gupta,R.P.(2003).Remote Sensing Geology.2nd Edition. Springer

- Drury,S.A.(1993).Image Interpretation in Geology.2ndEdition.Chapman & Hall
- Jensen, J.R. (2000). Remote Sensing of the Environment, An earth Resource Perspective. Pearson Education.
- DeMersM.N.(2008). Fundamentals of geographic Information System. 4th Edition.Wiley
- Richards, J.A. and Jia, X. (2006). Remote Sensing Digital Image Analysis: An Introduction. 4thEdition, Springer
- George Joseph(2005).Fundamentals of Remote Sensing 2nd edition: Universities Press
- Gopi,S, Sathikumar,R and Madhu,N(2006). Advanced Surveying total station GIS and Remote Sensing, PearsonEducation
- Sabins,F.F.(2007).Remote Sensing Principles and Interpretations 3rd Edition, Waveland Pr Inc.
- LillesT.M., Kiefer,R.W.and Chipman,J.(2008). Remote Sensing and Image Interpretation. 6th Edition, John Wiley and Sons.
- Bhatia, S.C. (2008). Fundamentals of Remote Sensing Atlantic Publications.
- Bhatta,B.(2011).Remote Sensing and GIS 2nd Edition, Oxford University Press
- Sabins, F.F. (2012). Remote Sensing Principles and Practice 3rd Edition, Levant Books
- Jensen, JR. (2013). Remote Sensing of the Environment: An Earth Resource Perspective 2nd Edition, Pearson India.

Suggested Online Link:

<u>https://www.classcentral.com/course/swayam-photogeology-remote-sensing-45165</u>

Paper III Project Oriented Dissertation

geology a apply the carrying o student to	me: This course will enable students to choose an nd select a problem for research. During this course knowledge gained so far in resolving geological p ut research work followed by presentation of work. It apply all his/her skills and work practically by using including field and laboratory work.	student will problems by will help the
Course type, paper & Credits	Content	Teaching hours
Research	The students will be assigned a minor research	240

and	topic to write a dissertation, under the supervision	
Dissertation	of a guide (faculty of the department).	
Project		
Oriented	The dissertation will be evaluated by combined	
Dissertation	team of external examiner and internal examiner	
(8)	(guide of the specific dissertation)	

Practical

Practical (04)	Section A: Applied Groundwater Hydrology : Preparation of ground water flow directions, Estimation of aquifer parameters using different mathematical equations, plotting groundwater quality properties (Hill & piper diagram, Durov plot and SAR plotting), Plot hydrological provinces In India.	120
	Section B: Advanced Remote Sensing & GIS: Determination of the scale of aerial photographs and imageries. Visual interpretation of aerial photographs and imageries for geomorphological, lithological, tectonic and geological mapping.	