Semester-I

Undergraduate Certificate in Botany

GENERIC ELECTIVE (GE)- Plant Cell Biology

No. of Hours- 60

Course Title	Credits	Credi	t distribution of	of the Course	Eligibility	Pre-
		Lecture	Tutorial	Practical/Practice	criteria	requisite of
						the course(if any)
Plant Cell Biology	4	4	0	0	Passed Class XII	Nil

Program	me : Und	Year: I	Semester: I			
Subject:	Botany		I			
Course: BOT Plant Cell Biology GE 1						
Course (Outcomes	:				
After t	he compl	etion of the course the students will be able	to:			
1.	Unders	tand the plant cell structure and its function.				
2.		tand the various cell components and the ication and interaction.	general principles in	ı cell		
3.	Study t	ne structure and genome organization of chl	loroplast and mitoche	ondria.		

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Principles of microscopy, cell theory, structural organization of the plant cell and its chemical composition, Cell wall structure and function.	15
2	Plasmamembrane, models, structures and functions, Cytoskeleton, organization and role of microtubules and microfilaments.	15
3	Structure and functions of nucleus, endoplasmic reticulum, golgi apparatus, ribosomes, lysosomes and glyoxysomes, chloroplast and mitochondria.	20
4	Demonstration of types of cells and different cell organelles through slides/photographs.	10

- Alberts, B., Hopkin, K., Johnson, A., Morgan, D., Raff, M., Roberts, K., & Walter, P. (2019). Essential cell biology (5th ed.). W. W. Norton & Company, Inc.
- Rastogi, V. B. Cell Biology. Medtech Science Press: A Division of Scientific International.
- Verma, P.S. and Agrawal, V. K. Cell Biology. (2016) S. Chand and Company, New Delhi.

Semester-II

Undergraduate Certificate in Botany

GENERIC ELECTIVE (GE)- Plant Science – I

No. of Hours- 60

	Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-
			Lecture	Tutorial	Practical/Practice	criteria	requisite of
							the course(if
							any)
		4	4	0	0	Passed Class	Nil
]	Plant Science						
	-1						

UNDERGRADUATE CERTIFICATE IN BOTANY						
Programme : Una	lergraduate Certificate in Botany	Year: I	Semester: II			
Subject: Botany						
Course: BOT GE 2	Plant Scier	nce – I				
Course Outcomes	:					
After the comp	letion of the course the students will be able	to:				
1. Develop und	erstanding about the classification and dive	ersity of different m	icrobes (viruses,			
Algae, Fungi	& Lichens) and their economic and ecologi	cal importance.				
2. Understand lichens.	the structure and reproduction of certain	selected bacteria, a	algae, fungi and			
3. Develop crit	ical understanding on morphology, anatom	ny and reproduction	of Bryophytes,			
Pteridophyte	s and Gymnosperms.					
4. Understand t	he basic concepts of plant taxonomy.					
5. Understand p	lant morphology, anatomy and embryology.					

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Microbes: General characteristics, economic and ecological importance of bacteria andviruses.Algae: General characteristics; range of thallus, reproduction and economic importanceFungi: General characteristics, reproduction, ecology and significance.	15
2	 Bryophytes: General characteristics, reproduction and economic importance. Pteridophytes: General characteristics, ecological and economic importance. Gymnosperms: General characteristics, ecological and economic importance. Introduction to Plant taxonomy, ICN, Herbarium and botanical garden. 	20
3	 Plant Embryology: Embryo, types of ovules and embryo sacs; endosperm; types of endosperm; dicot and monocot embryo, pollination, fertilization. Plant Anatomy: Types of tissues, root and shoot apical meristems, simple, complex and secretary tissues, structure of dicot and monocot root, stem and leaf. 	15
4	Demonstration of representative specimens of each group. Demonstration of types of embryo, ovules and cells through slides/photographs.	10

- Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, 4th edition. Singapore, John Wiley and Sons (Asia).
- Kumar, H.D. (1999). Introductory Phycology, 2nd edition. Delhi, Delhi: Affiliated East-West. Press Pvt. Ltd.
- Bhatnagar, S.P., Moitra, A. (1996). Gymnosperms. New Delhi, Delhi: New Age International (P) Ltd Publishers.
- Parihar, N.S. (1991). An introduction to Embryophyta. Vol. I. Bryophyta. Prayagraj: U.P.: Central Book Depot.

- Tortora, G.J., Funke, B.R., Case. C.L. (2007). Microbiology. San Francisco, U.S.A: Pearson Benjamin Cummings.
- Raven, P.H., Evert, RF., Eichhorn, S.E. (1999). Biology of Plants. New York, NY: W.H.Freeman and Company Worth Publishers.
- Singh, G. (2012). Plant Systematics: Theory and Practice, 3rd edition. Oxford and IBH Pvt.Ltd. New Delhi.

Semester-III

Undergraduate Diploma in Botany

No. of Hours- 60

Generic Elective: Plant Science – II

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-
		Lecture	Tutorial	Practical/Practice	criteria	requisite of
						the course(if any)
Plant Science – II	4	4	0	0	Passed Class	Nil

Programme : U	ndergraduate Diploma in Botany	Year: II	Semester: III
Subject: Botany	7	·	
Course: BOT GE 3	Plant Science – II		
Course Outcom	es:		
After the compl	etion of the course the students will be able	to	
1. Underst	and the basic biochemical and physiological	process in plants.	
2. Underst	and the fundamentals of plant tissue culture	techniques used in mo	lecular biology
3. Underst	and the concept of biodiversity and its conse	ervation.	
4. Underst	and the concepts of plant breeding method	ds and crop evolution.	

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Plant Physiology and Biochemistry: Photosynthesis, respiration, nitrogen fixation, carbohydrates, proteins, lipids and secondary metabolites.	15
2	Plant Biotechnology: Plant tissue culture, recombinant DNA technology and techniques used in molecular biology.Plant breeding methods and evolution of major crop plants, economics and utilization of plant resources.	15
3	Biodiversity and Conservation: Species, population, ecosystem, ecological succession, environmental pollution, biodiversity, In situ and ex situ conservation, International Union for Conservation of Nature (IUCN), Climate change and its consequence.	15
4	To test the presence of protein, carbohydrate and lipids in given sample. Preparation of MS medium for tissue culture. Visit to some in-situ and ex-situ conservation sites.	15

- Bajracharya, D., (1999). Experiments in Plant Physiology- A Laboratory Manual. NarosaPublishing House, New Delhi.
- Frankel O.H, Brown A.D.H. and Burdon J.J. (1995). The Conservation by Plant Diversity Technical guidelines for the site movement of Germplasm (1989) by FAO IBPGR.
- Hopkins, W.G., Huner, N.P., (2009). Introduction to Plant Physiology. John Wiley and Sons, U.S.A. 4th Edition.
- Kochhar S.L. (2016). Economic Botany. Cambridge University Press, London.
- Pandey, B.P. (1999). Economic Botany. S. Chand, New Delhi.
- Paroda R.S. and Arora R.K. (1991). Plant genetic resources Conservation and Management. International Board for Plant Genetic

Resources, (IBPGR), Rome, (Italy)

- Shantharam, S. and Montogmery, J.F. (1999). Biotechnology, Biosafety and Biodiversity. Oxford and IBH Publishing Co. Pvt. Ltd. New Delhi.
- Singh, B.D. (2005). Plant Breeding: Principles and Methods. Kalyani Publishers. 7thedition.
- Taiz, L., Zeiger, E., (2014). Plant Physiology. Sinauer Associates Inc., U.S.A. 6thEdition.
- Vasil, I.K. and Thorpe, T.A (1994). Plant Cell and Tissue Culture. Kluwer Academic Publishers, Netherlands.

Semester-IV

Undergraduate Diploma in Botany

Generic Elective: Inheritance in Plant Biology

No. of Hours-60

Course Title	Credits	Credi	t distribution o	Eligibility	Pre-	
		Lecture	Tutorial	Practical/Practice	criteria	requisite of
						the course(if any)
Inheritance in Plant Biology	4	4	0	0	Passed class	Nil

	UNDERGRADUATE DIPLOMA	IN BOTANY				
Programme : Un	edergraduate Diploma in Botany	Year: II	Semester: IV			
Subject: Botany			-			
Course: BOT GE 4 Inheritance in Plant Biology						

Course Outcomes:

After the completion of the course the students will be able to

- 1. Understand the concepts and principles of inheritance and sex determination.
- 2. Students will get familiarized with causal agents of genetic changes (mutations).
- 3. Learn how genetic information is used to detect diseases and also to establish unique identity of an individual.

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Chromosomal Inheritance: Principles of Mendelian inheritance, Incomplete dominance and co- dominance; Multiple allelism; lethal alleles; Linkage and crossing over. Extra-chromosomal Inheritance: Chloroplast Inheritance, Cytoplasmic	15
	inheritance.	
2	Chromosome structure and alternations in chromosome: Structural alterations in chromosome: duplication, deficiency, inversion and translocation Numerical alterations in chromosome: Euploidy, Aneuploidy and Polyploidy.	20
3	Mutation: spontaneous and induced mutation; physical and chemical mutagens; Consequences of mutation.	15
4	Demonstration of different stuructures of chromosomes and changes in chromosome structure	10

Suggested Readings

• Gardner, E.J., Simmons, M.J., Snustad, D.P. (1991). Principles of Genetics, 8th edition. New Delhi, Delhi: John Wiley & sons.

- Griffiths, A.J.F., Wessler, S.R., Carroll, S.B., Doebley, J. (2020). Introduction to Genetic Analysis, 12th edition. New York, NY: W.H. Freeman and Co.
- Klug, W.S., Cummings, M.R., Spencer, C.A. (2020). Concepts of Genetics, 12th edition. San Francisco, California: Benjamin Cummings.
- Campbell, N.A., Urry,L.A., Cain, M.L., Wasserman,S.A., Minorsky, P.V., Reece, J.B. (2020). Biology, 12th Edition. Harlow,England : Pearson

Semester-V

Bachelor of Science in Botany

Generic Elective: Medicinal Plants of Uttarakhand

No. of Hours-60

Course Title	Credits	Credi	t distribution o	Eligibility	Pre-	
		Lecture	Tutorial	Practical/Practice	criteria	requisite of
						the course(if any)
Medicinal Plants of Uttarakhand	4	4	0	0	Passed Class	Nil

	BACHELOR OF SCIENCE IN BO	TANY				
Programme : Ba	chelor of Science in Botany	Year: III	Semester: V			
Subject: Botany		ł				
Course: BOT GE 5Medicinal Plants of Uttarakhand						

Course Outcomes:

After the completion of the course the students will be able to:

- 1. Understand the diversity and distribution of medicinal plants in Uttarakhand
- 2. Study the techniques/methods for the sustainable utilization of the medicinal plants.
- 3. Understand the economic importance of medicinal plants of Uttarakhand.

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	 General idea of Indian systems of medicine (Ayurveda, Siddha, Unani, Tibetan, Yoga and Naturopathy) and the traditional medicinal system of Uttarakhand. Brief history, prospects and uses of important medicinal plants of Uttarakhand Himalaya, scope and importance of medicinal plants, challenges in medicinal plant sector. 	20
2	Diversity, distribution, assessment and indigenous uses of threatened medicinal plants of Uttarakhand. Collection and processing of medicinal plants; methods for documentation of traditional medicine knowledge.	15
3	Promotion of medicinal plant sector at national level: National Medicinal Plant Board and State Medicinal Plant Boards - objectives and functions. Other organizational initiatives for promotion of MAPs at National and International levels. Demand and supply of medicinal plants. Conservation, threats, IUCN Red list criteria and management of threatened medicinal plants of Uttarakhand.	15

4	Demonstration	and	identification	of	some	important	medicinal	10
	plants							

- Anonymous. (2014). Herbal Wealth of Uttarakhand Vol. I & II. Central Council for Research in Ayurvedic Sciences, New Delhi.
- Arber, A. (1999). Herbal plants and Drugs. Mangal Deep Publications.
- Arya, D., Joshi, G.C. and Tewari, L.M. 2018. Crude drugs plants of Uttarakhand. Indu Book Services Pvt. Ltd. (Publishers & Distributors) New Delhi.
- Bhatt, D., Joshi, G.C., Tewari, L.M. and Pandey, N.C. (2020). Traditional Medicinal Systems and Threatened Medicinal Plants of Kumaun, Western Himalaya, India. Indu Book Services Pvt. Ltd. (Publishers & Distributors) New Delhi.
- Chhetri, D.R. (2015). Medicinal Plants of the Himalaya: Production Technology and Utilization. Agrobios (India).
- Chopra, R.N., Nayar S.L. and Chopra, I.C. (1956). Glossary of Indian Medicinal Plants, C.S.I.R, New Delhi.
- Kala, C.P. (2010). Medicinal Plants of Uttarakhand: Diversity, Livelihood and Conservation, Biotech Books.
- Pandey, P.C., Tewari, L. and Pande, H.C. (2006). Folk Medicine and Aromatic Plants Of Uttaranchal, Bishen Singh Mahendra Pal Singh, Dehradun.
- Sah, R. (2004). Nature's Medicinal plants of Uttarakhand: Herbs, Grasses and Ferns. Vol. II. Gyandodaya Prakashan, Nainital.
- Sah, R. (2004). Nature's Medicinal plants of Uttarakhand: Tree, shrubs and Climbers.
 Vol. I. Gyandodaya Prakashan, Nainital.
- Tewari, L.M., Singh, N., Upreti, K. and Pangtey, Y.P.S. (2008). Medicinal Plants of Ranikhet Consul Book Depot, Nainital.

Bachelor of Science in Botany

GENERIC ELECTIVE (GE): Global Climate Change

No. OF Hours-60

Course Title	Credits	Credi	t distribution o	Eligibility	Pre-	
		Lecture	Tutorial	Practical/Practice	criteria	requisite of the course(if any)
Global Climate Change	4	4	0	0	Passed Class	Nil

Program	me : <i>Ba</i>	chelor of Science in Botany	Year: III	Semester: VI		
Subject:	Botany					
Course: BOTGlobal Climate ChangeGE 6						
Course C	Outcome	S:				
After th	ne compl	etion of the course the students will be able to:				
1. Understand the global climate changes and global warming.						
2.	Learn	about the measures being taken for the mitigation of	climate chang	ges.		

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	General concept of Global climate change, Impact of global warming and climate change, Greenhouse effect, Greenhouse gases, Carbon foot print, Carbon trading, Carbon sequestration.	15
2	Introduction to climate change adaptation, Mitigation strategies for global warming, International initiative for mitigating global climate changes; Inter governmental panel on climate change (IPCC); United Nation Framework convention on Climate change (UNFCCC).	15
3	Climate change policy and international solutions, Conference of Parties (COP), Kyoto protocol; Montreal protocol; Paris Pact; India's initiatives for mitigating climate change.	15
4	To assess the carbon foot print and carbon sequestration potential opf different forest types.	15

- Singh, S., Singh, P., Rangabhashiyam, S. and Srivastava, K. K. (2021). Global Climate Change, Elsevier.
- Singh, J.S. Singh S.P. and Gupta, S.R. (2014). Ecology, Environment and Resource Conservation. S. Chand and Company Pvt. Ltd., New Delhi.
- Mathez, E. A. and Smerdon, J. (2009). Climate Change- The Science of Global Warming and Our Energy Future, Columbia University Press.

GENERIC ELECTIVE (GE)- MOLECULAR BIOLOGY

No. of Hours-60

Course Title	Credits		Credit distribu	ition of the Course	Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the Course (if any)
Molecular Biology	4	4	0	0	Bachelor of Science in Botany	Nil

			B	ACHI	ELOR I	N :	BO	TAN	YV	VITE	I HON	NO	URS				
Programme : Master of Science in Botany					Year: IV				Semester: VII								
Subject: B	otany													ł			
Course: B GE7	ОТ					(Cou	ırse T	fitle	: Mo	lecula	r E	Biology				
Course			of t	ha aau	rea tha		dan	to wil	1 6 .	ahla	to						
After the	1																
1.	Learn th	ne str	ructu	re and	function	n o	of nu	ucleic	c aci	ds at	molec	ula	ar level.				
2.	Underst	and t	the c	oncept	t of cent	ral	dog	gma a	and g	genet	ic cod	e.					
3.	Learn m	nolec	cular	details	s of DNA	A r	epli	icatio	n an	d its	types.						
	Underst translati			-							U	-	post-transc roteins	criptic	onal	and	pos

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Nucleic acids as carriers of genetic information :	12
	Experiments that established nucleic acids (DNA & RNA) as the carrier	
	of genetic information: Griffith's, Hershey & Chase, Avery, McLeod &	
	McCarty and Fraenkel-Conrat's experiment.	
	Structure and organization of the genetic material :	
	DNA double helix structure (Watson and Crick model); salient features	
	of DNA double helix. Types of DNA: A, B & Z conformations,	
	denaturation and renaturation (only melting profile- Tm), types of RNA	
	(mRNA and rRNA, tRNA).	
2	Central Dogma and Genetic Code :	20
	The Central Dogma, Genetic code and its salient features, Experiments	
	for deciphering Genetic code (Experiments by Nirenberg & Metthaei	
	and Har Gobind Khorana).	
	Replication of DNA :	
	Mechanism - initiation, elongation and termination; Enzymes and other	
	proteins involved in DNA replication; General principles – bidirectional,	
	semiconservative and semi discontinuous replication (Replisome), RNA	
	priming (Primase & Primosome); Various modes of DNA replication,	
	including rolling circle, θ (theta) mode of replication, replication of	
	linear ds-DNA. Replication of the 5'end of linear chromosome (end	
	replication problem & Telomerase).	
3	Mechanism of Transcription :	20
	Transcription process in prokaryotes (Initiation, Elongation and	
	Termination); structure and function of RNA polymerase enzyme;	
	concept of promoters and transcription factors; major differences	
	between prokaryotic and eukaryotic transcription; concept of post	

	transcriptional modifications (eukaryotic mRNA processing: 5' capping;	
	3' tailing).	
	Mechanism of Translation :	
	Translation in prokaryotes: Initiation, Elongation and Termination;	
	concept of charging of tRNA and role of aminoacyl synthetases;	
	ribosome structure and assembly (in prokaryotes and eukaryotes); major	
	differences between prokaryotic and eukaryotic translation; post-	
	translational modifications (concept of phosphorylation, glycosylation-	
	briefly).	
4	Demonstration of double helical structure of DNA, replication,	8
	transcription and translation with 3-D structure through power point	
	presentation	

- Lodish, H., Berk, A., Zipursky, S.L. Maztsudaira, P., Baltimore, Dand Darnell, l. (2016). Molecular Cell Biology (8th Edition). W.H. Freeman and Co., New York, USA.
- Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J.D. (2014). Molecular Biology of the Cell. Garland Publishing Inc., New York.6th edition.
- Watson, J.D. (2013). Molecular Biology of the Genes, Banjamin.7th Edition.
- Wolfe, S.L. (1993). Molecular and Cellular Biology. Wadsworth Publishing Co. California.
- Stent, G.S. (1986).Molecular genetics. Bishen Singh Mahendra Pal Singh, Dehradun.
- Barry, J.M. and Barry. B.M. (1973). Molecular Biology, Prentice Hall of India. New Delhi.

GENERIC ELECTIVE (GE)- FUNDAMENTALS OF BIOCHEMISTRY

No. of Hours- 60

Course Title	Credits	Credi	t distribution o	of the Course	Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course(if any)
Fundamentals of Biochemistry	4	4	0	0	Bachelor of Science in Botany	Nil

Programme : Ba	chelor in Botany With Honours	Year: IV Semester: VII				
Subject: Botany						
Course: BOT GE 8	Course Title: Fundamentals of Biochemistry	У				
Course Outcome	s:					
After the comple	tion of the course the students will be able to:					
1. Under	stand the structure, classification and functions o	f biochemical con	npounds.			
2. Under	stand the structure, functions and biochemical pa	thway of seconda	ry metabolites.			
3. Under	stand the catalytic mechanism of enzymes, their	inhibitors and reg	ulation.			

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Carbohydrates: structure and function of monosaccharides oligosaccharides, polysaccharides, Glycolysis, Feeder pathway Lipids: Fat metabolism (simple lipids, compound lipids, derived lipids), fat metabolism, β-oxidation of fats.	15
2	Proteins: Amino acids, structure of primary, secondary, tertiary, quaternary proteins, Ramachandran plot, protein Sequencing. Secondary metabolites: Alkaloids, flavanoid, terpenoid and their biosynthetic pathway.	15
3	Enzymology: General aspects, allosteric mechanism ,regulatory and active sites, isozymes, kinetics of enzymatic analysis, Michaelis- Menten equation and its significance, enzyme inhibition (competitive, uncompetitive and non- competitive).	20
4	To test the presence of different substrates in given samples. To estimate R.Q. of different substrates.	10

- Nelson, D. L. and Cox, M. M. (2021). Lehninzer. Principles of Biotechnology. Macmillan, 8th Edition.
- Srivastava,H.S.(2003).Elements of Biochemistry. Rastogi Publications, Meerut.
- Cooper, T.G.(1977). Tools in Biochemistry. Wiley New York.
- Bosch,C.(1972).Mechanism of Protein Synthesis and its Regulation. Elsevier Pub. Comp. N. York.
- Ribonsen, T. (1968). The biochemistry of Alkaloides Springer Verlog, Berlin
- Meister, A. (1965). Biochemistry of the Amino acids. 2vols. Academic Press, New York

GENERIC ELECTIVE (GE) – METHODS IN PLANT BIOLOGY AND THEIR APPLICATIONS

No. of Hours-60

Course Title	Credits		Credit distribu	ition of the Course	Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the Course (if any)
Methods in Plant Biology and their Applications	4	4	0	0	Bachelor of Science in Botany	Nil

Programme : <i>Bachelor in Botany with Honours</i>	Year: IV	Semester: VIII
Subject: Botany		
Course: BOT GE 9	Course Title	: Methods in Plan
	Biology and	their Applications

- 1. Gain the knowledge of various techniques and instruments used for the study of plant biology.
- 2. Understand the principles and use of light, confocal and electron microscopy, Principles of centrifugation, spectrophotometry, chromatography, x-ray diffraction technique and chromatography techniques.

Credits: 4	Generic Elective
Max. Marks:	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Plants and Intelligence Introduction to plant Intelligence and memory - Historical perspective, Sensory Biology, Cell to cell communication, Self-recognition, Recognition of neighbors and relatives.	15
2	 Principles of Microscopy Dissection and light and compound microscope, electron microscope (SEM and TEM), importance of sample preparation for microscopy, staining techniques, micrometry. Histo-chemical and Immuno techniques Antibody generation, detection of molecules using ELISA, RIA, western blot, immunoprecipitation, flowcytometry and immunofluorescence microscopy, detection of molecules in living cells, in situ localization by techniques such as FISH and GISH. 	20
3	Biophysical MethodMolecular analysis using UV/visible and fluorescence, spectrophotometer, circular dichroism, NMR and ESR spectroscopy, Molecular structure determination using X-ray diffraction and NMR, molecular analysis using light scattering, different types of mass spectrometry and surface plasma resonance methods.	15
4	Demonstration of different instruments used in plant biology	10

- Trewavas A. (2017). The foundations of plant intelligence. Interface Focus 7: 20160098. http://dx.doi.org/10.1098/rsfs.2016.0098
- Wilson, K., Walker, J. (2018). Principles and Techniques of Biochemistry and Molecular Biology, Cambridge University Press.
- Koller, D. (2011). The Restless Plant. Edited by Elizabeth Van Volkenburgh, Haward University Press, Cambridge, Massachusetts, and London, England.

GENERIC ELECTIVE (GE) – TRADITIONAL KNOWLEDGE SYSTEM

No. of Hours-60

CREDIT DISTRIBUTION, ELIGIBILITYAND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the Course (if any)
Traditional Knowledge System	4	4	0	0	Bachelor of Science in Botany	Nil

Programme : <i>Bachelor in Botany with Honours</i>	Year: IV	Semester: VIII
Subject: Botany	I	
Course: BOT GE 10	Course T	itle: Traditional
	Know	ledge System
	e students will be able	

2. Study the traditional knowledge systems of major tribal communities of Uttarakhand.

3. Explain the need for and importance of protecting traditional knowledge.

4. Interpret the concepts of Intellectual property in order to protect the traditional knowledge.

Credits: 4	Generic Elective
Max. Marks:	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)					
1	Traditional knowledge: Introduction, nature and characteristics, scope and	20					
	importance, Kinds of traditional knowledge (Unani/Siddha/Ayurveda),						
	Indigenous Knowledge (IK), characteristics, traditional knowledge vis-a-vis						
	indigenous knowledge, traditional knowledge of Uttarakhand.						
	Protection of traditional knowledge: The need for protecting traditional						
	knowledge Significance of TK Protection, value of TK in global						
	economy, Role of Government to harness TK.						
2	Traditional knowledge and intellectual property: Systems for protection of	15					
	traditional knowledge, Legal concepts for the protection of traditional						
	knowledge, Patents and traditional knowledge, Strategies to increase						
	protection of traditional knowledge, Geographical Indications (GI).						
3	Aspects of Biodiversity and Indian Traditions: Traditional knowledge of	15					
	Uttarakhand: With special reference to food, agriculture and medicine.						
	Tribal communities (Raji, Bhotia, Tharu and Boxa) of Uttarakhand: their						
	culture and traditional knowledge on the uutilization of plants. Traditional						
	Knowledge and it implication in modern society, Traditional Knowledge						
	Digital Library (TKDL).						
4	Methods of documenting uses of plants in traditional practices	10					

- Jha, A. (2009). Traditional Knowledge System in India,
- Kappor, K. (). Knowledge Traditions and Practices of India.
- Pande, P.C. Madhya Himalayi Sanskriti mein Gyan, Vigyan evam Paravigyan.
- Ram Reddy,S. Surekha ,M. and Krishna Reddy,V (2016). Biodiversity Traditional Knowledge Intellectual Property Rights .Scientific Publishers.
- Unnikrishna,P and Suneetha, M. (2012). Biodiversity, traditional knowledge and community health: strengthening linkages. Institute for Advanced Studies, United Nations University, Tokyo.
- TKDL (www.tkdl.res.in) online resources.

GENERIC ELECTIVE (GE) – FOREST ECOLOGY

No. of Hours-60

Course	Credit	Credit distribution of the Course		Eligibili	Pre-	
Title	S	Lecture	Tutorial	Practical/Practice	ty	requisiteof
					criteri	the
					a	course(if any)
Forest Ecology	4	4	0	0	Honours Degree in Botany	Nil

MASTER OF SCIENCE IN BOTANY					
Programme : A	Master of Science in Botany	Yes	ar: V	Semester: IX	
Subject: Botar	Ŋ				
Course: BOT GE 11	Course Title: Forest Ecology				
Course Outcon After the	nes: completion of the course the students w	ill be able to:			
1. Und	erstand the structure and function of fore	est ecosystem.			
	erstand methods for studying vegetation system function, biodiversity, carbon store	• 1		1	
3. Und	erstand the students to understand the	linkage between l	numan	s and forests.	

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	General Aspects of Forests: Forest ecology and forest ecosystems, Importance of forests in environmental conservation Primary Productivity and Detritus Pool; Formulations of Primary Productivity: Photosynthetic pathways and their significance; Allocation of Net primary production and biomass accumulation; Measurement of biomass and primary productivity in forest ecosystems of the world; Plant biomass and turnover; Human Use of productivity.	15
2	Litter fall in Forest Ecosystems; determining litter fall, factors affecting it; Forest litter: type of litter; Coarse Woody debris; forest floor litter mass. Detritus Pathway of Energy Flow and Decomposition Processes: Decomposer organisms and their trophic interactions; decomposition processes; Measurements of Litter decomposition; decomposition rate. Nutrient cycling in forest ecosystems: nutrient cycle models in forest ecosystem. Nutrient supply and uptake , Role of mycorrhizae in nutrient cycling; Nutrient concentration and storage in vegetation.	15
3	Succession: Overview on forest succession with focus on Himalayan forest ecosystem; Attributes of species of different successional stages Major forest types of forest India: Forest classification of India; Forest of Himalaya with particular reference to Sal, Pine and Oak forests.	20

	Global climate changes and forests.				
	Man and forest: Commercial exploitation of forest, shifting				
	agriculture; settled agriculture; structure and functioning of				
	Central Himalayan Agroecosystem.				
	Regeneration status of major forest trees with respect to acute				
	vs. chronic human disturbance; Shifting cultivation practices.				
4	Assessment of forest biomass, carbon sequestration, primary 10				
	productivity and regeneration pattern of different forests.				

- Bir, S.S. and Chatha, G.S. (1988). Forest Vegetation Characteristics of Indian Hills. Today and Tomorrow's Printers & Publ., New Delhi.
- Misra, R. (1968). Ecology Work Book. Oxford & IBH Publishing Co. New Delhi.
- Puri, G.S., Meher-Homji V.M., Gupta R.K. and Puri R.K. (1960). Forest Ecology. Oxford and IBH Pub.Co. Pvt. New Delhi.
- Singh, J.S. and. Singh, S.P. (2014). Forest of Himalaya: structure, Function and Impact of Man. Gyanodaya Prakashan, Nainital, India.
- Singh, J.S. Singh S.P. and Gupta, S.R. (2014). Ecology, Environment and Resource Conservation. S. Chand and Compony Pvt. Ltd., New Delhi.
- Waring, R.H. and Schlesinger, W.H. (1985). Forest Ecosystems: Concepts and Management. Academic Press, New York.

GENERIC ELECTIVE (GE) – HERBARIUM TECHNIQUES

No. of Hours-60

CREDIT DISTRIBUTION, ELIGIBILITYAND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribution of the Course		Eligibility	Pre-requisite	
		Lecture	Tutorial	Practical/Practice	criteria	of the Course (if any)
Herbarium Techniques	4	4	0	0	Honours Degree in Botany	Nil

	MASTER OF SCIENCE IN	N BOTANY	
Programme : Ma	ster of Science in Botany	Year: V	Semester: IX
Subject: Botany		I	
Course: BOT GE 12	Course Title: Introduction of	Herbarium And Its Si	gnificance
Course outcon	es: After the completion of the course the	e students will be able to	0
1. Underst	and the processing and importance of Her	barium.	
2. Learn al	pout the preparation of Flora.		
3. Learn th	e basic techniques of classification.		
1 Underst	and the collection and identification of al	anta	

4. Understand the collection and identification of plants.

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Herbarium: History, Introduction, Methods of Collection of Specimens, Tools and Equipment, Botanical Gardens.	20
	Herbarium Preparation (a. Poisoning, b. Pressing, c. Drying, d. Mounting, e. Documentation, f. Arrangement, g. Maintenance h. Cataloging)	
2	Types of herbaria (International, National, Regional and University, Medicinal plant, Economically important plant, Agricultural herbaria), Important herbaria of the World, Major Herbaria in India, Acronym.	15
3	Role of Herbarium in Teaching and Research, Function of Herbarium and Conservation, Digitization, Virtual Herbarium.	15
4	Visit to herbarium; demonstration and preparation of herbarium from local flora	10

- Saxena, N.B. and Saxena, S. (2012). Plant Taxonomy. Pragati Prakashan.
- Jain, S.K. and Rao, R.R. (1976). A Hand book of Field and Herbarium Methods.
- Sambamurty A.V.S.S. (2010). Taxonomy of Angiosperms. I.K. International Pvt. Ltd.
- Singh, G. (2010). Plant Systematics. CBS PUB & DIST PVT Limited INDIA.
- Sharma,O.P. (2009). Plant Taxonomy. Tata McGraw-Hill Publishing Company Limited, New Delhi.
- Gaur R.D. (1999). Flora of District Garhwal, N.W. Himalaya Transmedia, Srinagar Garhwal.

Semester X

GENERIC ELECTIVE (GE): LICHENOLOGY

No. of Hours-60

Course	Credits	Cred	lit distributi	on of the Course	Eligibili	Pre-
Title		Lecture	Tutorial	Practical/Practice	ty	requisiteof
					criteri	the
					а	course(if any)
Lichenology	4	4	0	0	Botany in Honours Degree	Nil

Programme : Ma	MASTER OF SCIENCE I	Year: V	Semester:
-			X
Subject: Botany			
Course: BOT GE 13	Course Title: Lichenology		
 Understand lichens. Develop co Understand Study the e 	es: etion of the course the students will be all the general characters, structure, typ onceptual skill about identifying fungi an the physiology and biochemistry of lich cological and economic importance of li ledge about the major lichen families and	es, reproduction and v d lichens. ens. chens.	

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Introduction, General characteristics of lichens, history of	20
	Lichenology, collection and preservation of lichens, habitat and growth form of lichens.	
	Classification of lichens.	
	Morphology and anatomy of lichens, Reproduction in lichens.	
2	Physiology and chemistry of lichens, ecological and economic	15
	importance of lichens, Overview of some common lichens of	
	Uttarakhand Himalaya.	
3	Salient features of Parmeliaceae, Lecanoraceae, Teloschistaceae,	15
	Ramalinaceae, Physciaceae, Collemataceace, Candelariaceae,	
	Peltigeraceae and Usneaceae.	
4	Methods to identify different lichens.	10
	Demonstration of different lichen specimens	

- Arya, V., Kumar, B. and Arya, P. (2019). Lichen Wealth of Uttarakhand Himalaya. Lap Lambert Academic Publishing.
- Awasthi, D.D. (2000). Hand book of lichens, Bishen Singh Mahendrapal Singh: Dehradun India.
- Awasthi, D.D. (2007). A compendium of the macrolichens of India, Nepal and Srilanka. Dehradun Bishen Singh Mahendra pal Singh: Dehradun India.
- Sati, S.C. and Pant, P. (2023). A test Book on Lichens: The Endolichenic Fungi. Elite Publishing House, New Delhi.
- Webster, J. (1985). Introduction to Fungi. Cambridge University Press. New York.

Semester X

GENERIC ELECTIVE (GE): PALAEOBOTANY

No. of Hours-60

Course	Credits	Cred	lit distributi	on of the Course	Eligibili	Pre-
Title		Lecture	Tutorial	Practical/Practice	ty	requisiteof
					criteri	the
					а	course(if any)
Paleobotany	4	4	0	0	Honours Degree in Botany	Nil

	MASTER OF SCIENCE IN	N BOTANY	
Programme : M	aster of Science in Botany	Year: V	Semester: X
Subject: Botany			
Course: BOT GE 14	Course Title: Paleobotany		
Course Outcom After the compl	es: etion of the course the students will be able	e to:	
	derstand the importance of paleobotany in derstand the process of fossilization and fa	1	ocess of fossilization

Credits: 4	Generic Elective
Max. Marks: As per Univ. rules	Min. Passing Marks: Asper Univ. rules

Unit	Торіс	No. of Hours (60)
1	Definition and importance of Paleobotany, Principles of Paleobotany	20
	Geological time scale	
	Fossil; Definition, types and mode of preservation	
	Fossilization: Theories and factors affecting the process of fossilization	
	Nomenclature and reconstruction of fossil plants	
	Methods of study of fossils and carbon dating technique	
2	Origin and evolution of life: Overview of the earliest environment on	15
	Earth, Basic concepts and theories about origin of life.	
	Applied Paleobotany: Fundamentals of paleo-floristics,	
	paleogeography, paleoecology and paleoclimatology	
3	Colonization of land: Emergence of seed plants, appearance of	15
	angiosperms, basic concept of continental drift, Paleobotany in India,	
	Gondwana flora	
4	Demonstration of different types of fossils through preserved	10
	specimens	

- C.A. Arnold. (1947). An introduction to Paleobotany
- J. Walton. (1940). An introduction to the study of fossil plants