KUMAUN UNIVERSITY NAINITAL

DRAFT

National Education Policy-2020

Common Minimum Syllabus for Uttarakhand State Universities and Colleges

Four Year Undergraduate Programme FYUP/Honours Programme/Master in Science

MATHEMATICS SYLLABUS

DEPARTMENT OF MATHEMATICS

Contents

List of Papers (DSC, DSE, GE) with Semester Wise Titles for 'Mathematics'	3
Program Outcomes (POs) (Undergraduate Programme):	5
Program Outcomes (POs) (Honors Programme):	5
Program Outcomes (POs) (Master Degree Programme):	5
PROGRAM SPECIFIC OUTCOMES (PSOS)	5
Semester-I	7
DISCIPLINE SPECIFIC COURSE (DSC Maths1)- Fundamental Mathematics-I	7
Semester-II	9
DISCIPLINE SPECIFIC COURSE (DSC Maths2)- Fundamental Mathematics -II	9
Semester-III.	11
DISCIPLINE SPECIFIC COURSE (DSC Maths3)- Differential Calculus	11
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths1)- Geometry	13
Semester-IV	15
DISCIPLINE SPECIFIC COURSE (DSC Maths4)- Integral Calculus	15
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths2)- Group Theory	17
Semester-V	19
DISCIPLINE SPECIFIC COURSE (DSC Maths5)- Analysis	19
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths3)- Ring Theory	21
Semester-VI	23
DISCIPLINE SPECIFIC COURSE (DSC Maths6)- Vector spaces and linear transform	
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths4)- Differential Equations	25
Semester-VII	27
DISCIPLINE SPECIFIC COURSE (DSC Maths7)- Real Analysis	27
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths5)- Topology	29
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths6)- Differential Geometry	31
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths7)- Dynamics of Rigid Bodies	33
Semester-VIII	35
DISCIPLINE SPECIFIC COURSE (DSC Maths8)- Complex Analysis	35
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths8)- Algebra	37
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths9)- Partial Differential Equations	39
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths 10) - Tensor Calculus	41

Semester-IX	43
DISCIPLINE SPECIFIC COURSE (DSC Maths9)- Linear Algebra	43
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths11)- Measure Theory	45
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths12A)- Mathematical Statistics	47
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths12B)- Number Theory	49
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths13A)- Fluid Dynamics	51
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths13B)- Discrete Mathematics	53
Semester-X	55
DISCIPLINE SPECIFIC COURSE (DSC Maths10)- Functional Analysis	55
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths14)- Numerical Methods	57
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths15A)- Operations Research	59
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths15B)- Relativity	61
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths16A)- Special Functions	63
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths16B)- Riemannian Geometry	65
DISCIPLINE SPECIFIC ELECTIVE (DSE Maths16C)- Introduction to programming u	using

List of Pap	pers (DSC,	DSE, GE) with	Semester Wise Titles for '	Mathema	tics'	
Year	Semester	Course Paper Title		Credits		
Certificate in Science (Mathematics as one of the major Subject)						
FIRST	I	DSC Maths1	Fundamental Mathematics-I	Theory	4	
YEAR	II	DSC Maths2	Fundamental Mathematics-II	Theory	4	
Diploma i	n Science	(Mathematics	as one of the major Subje	ect)		
	TIT	DSC Maths3	Differential Calculus	Theory	4	
SECOND	III	DSE Maths1	Geometry	Theory	4	
YEAR		DSC Maths4	Integral Calculus	Theory	4	
	IV	DSE Maths2	Group Theory	Theory	4	
Bachelor	of Science	(Mathematics	as one of the major Subje	ect)		
	V	DSC Maths5	Analysis	Theory	4	
THIRD		DSE Maths3	Ring Theory	Theory	4	
YEAR		DSC Maths6	Linear Algebra	Theory	4	
	VI	DSE Maths4	Differential Equations	Theory	4	
Bachelor	of Science	(Honors)				
		DSC Maths7	Real Analysis	Theory	4	
		DSE Maths5	Topology	Theory	4	
FOURTH YEAR	VII	DSE Maths6	Differential Geometry	Theory	4	
		DSE Maths7	Dynamics of Rigid Bodies	Theory	4	
	VIII	DSC Maths8	Complex Analysis	Theory	4	

		DSE Maths8	Algebra	Theory	4
		DSE Maths9	Partial Differential Equations	Theory	4
		DSE Maths10	Tensor Calculus	Theory	4
Master of	Science (N	Sathematics)			
		DSC Maths9	Linear Algebra	Theory	4
	IX	DSE Maths11	Measure Theory	Theory	4
		DSE Maths12	**Mathematical Statistics / Number Theory	Theory	4
		DSE Maths13	**Fluid Dynamics / Discrete Mathematics	Theory	4
FIFTH	D D	DSC Maths10	Functional Analysis	Theory	4
YEAR		DSE Maths14	Numerical Methods	Theory	4
		DSE Maths15	**Operations Research / Relativity	Theory	4
		DSE Maths16	**Special Functions / Riemannian Geometry / Introduction to programming using MATLAB	Theory	4

^{**} A Candidate is required to opt any one specialization out of the available specializations in fifth Year.

Abbreviations-

DSC-Discipline Specific Course; DSE- Discipline Specific Electives; GE-Generic Electives;

Program Outcomes (POs) (Undergraduate Programme): After this programme: PO 1. Students will have a firm foundation in the fundamentals and applications of mathematics and scientific theories. PO 2. Students will develop skills in problem solving, critical thinking and analytical reasoning as applied to scientific problems. PO 3. Students will be able to explore new directions to pursue higher studies in science subjects. PO 4. Students will be able to contest and qualify different competitive exams where graduation degree is one of the essential qualifications. PO 5. Students will be able to function as a member of an interdisciplinary problem-solving team. Program Outcomes (POs) (Honors Programme): After this programme: PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11. PO 12.								
PO 1. Students will have a firm foundation in the fundamentals and applications of mathematics and scientific theories. PO 2. Students will develop skills in problem solving, critical thinking and analytical reasoning as applied to scientific problems. PO 3. Students will be able to explore new directions to pursue higher studies in science subjects. PO 4. Students will be able to contest and qualify different competitive exams where graduation degree is one of the essential qualifications. PO 5. Students will be able to function as a member of an interdisciplinary problem-solving team. Program Outcomes (POs) (Honors Programme): After this programme: PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	Progran							
mathematics and scientific theories. PO 2. Students will develop skills in problem solving, critical thinking and analytical reasoning as applied to scientific problems. PO 3. Students will be able to explore new directions to pursue higher studies in science subjects. PO 4. Students will be able to contest and qualify different competitive exams where graduation degree is one of the essential qualifications. PO 5. Students will be able to function as a member of an interdisciplinary problem-solving team. Program Outcomes (POs) (Honors Programme): After this programme: PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.		After this programme:						
reasoning as applied to scientific problems. PO 3. Students will be able to explore new directions to pursue higher studies in science subjects. PO 4. Students will be able to contest and qualify different competitive exams where graduation degree is one of the essential qualifications. PO 5. Students will be able to function as a member of an interdisciplinary problem-solving team. Program Outcomes (POs) (Honors Programme): After this programme: PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	PO 1.							
subjects. PO 4. Students will be able to contest and qualify different competitive exams where graduation degree is one of the essential qualifications. PO 5. Students will be able to function as a member of an interdisciplinary problem-solving team. Program Outcomes (POs) (Honors Programme): After this programme: PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	PO 2.							
graduation degree is one of the essential qualifications. PO 5. Students will be able to function as a member of an interdisciplinary problem-solving team. Program Outcomes (POs) (Honors Programme): After this programme: PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	PO 3.	1						
team. Program Outcomes (POs) (Honors Programme): After this programme: PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	PO 4.	<u> </u>						
After this programme: PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	PO 5.							
PO 6. PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	Progran	n Outcomes (POs) (Honors Programme):						
PO 7. PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.		After this programme:						
PO 8. Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	PO 6.							
Program Outcomes (POs) (Master Degree Programme): After this programme: PO 9. PO 10. PO 11.	PO 7.							
After this programme: PO 9. PO 10. PO 11.	PO 8.							
PO 9. PO 10. PO 11.	Progran	n Outcomes (POs) (Master Degree Programme):						
PO 10. PO 11.		After this programme:						
PO 11.	PO 9.							
	PO 10.							
PO 12.	PO 11.							
	PO 12.							

PROG	RAM SPECIFIC OUTCOMES (PSOS)
	Certificate in Science (Mathematics as one of the major Subject)
First Year	Certificate in Science will give students a basic knowledge of mathematics. Two other major subjects needed for the study of other courses in forthcoming years. It will enable students to join the diploma course (semester III and IV) in any University or College of Higher education in Uttarakhand
G 1	Diploma in Science (Mathematics as one of the major Subject)
Second Year	Diploma will enable students to join the Bachelor of Science course (semester V and VI) in any University or College of Higher education in Uttarakhand
Third	Bachelor of Science (Mathematics as one of the major Subject)
Year	Upon completion of a degree, students will be eligible for Master Degree in any of the major subject in any of the higher institutions of India. It will give students an ability of critical thinking and scientific study of any discipline. Students after getting Bachelor

	degree will be eligible for all the competitive examinations where graduation is an
	essential qualification.
Fourth	Bachelor of Science (Honors)
Year	After completing the degree of Bachelor of science (Honors), students will be eligible
	for one year Master degree programme in the subject. It will explore students to
	advanced topics / techniques used in mathematics and also will help them to develop the
	ability to formulate real life problems mathematically and solve using these techniques.
	They will be eligible to pursue their career in various fields of academics, research and
	industry as well as to obtain master degree in Mathematics.
Fifth	Master of Science (Mathematics)
Year	The Master of Science in Mathematics Programme will enable students to join Ph. D.
	program in universities and research institutes within India or abroad. The student
	would get research experience by doing research projects in the last semester under the
	supervision of faculty which will make them eligible to open up several career options in
	mathematics and other branches of mathematical sciences and physical sciences.

Department of Mathematics

Semester-I

Certificate in Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC COURSE (DSC Maths1)- Fundamental Mathematics-I

No. of Hours: 50-60

Course Title	Credits	Credit distribut		Eligibility criteria	Pre-requisite of the course	
		Lecture	Tutorial	Practical/Practice	Criteria	(if any)
DSC Maths1: Fundamental Mathematics- I	4	3	2	0	Passed Class XII with Mathematics	Nil

Certificate in	Science (Math	ematics as one of the majo	or Subject)		
Programme:	Certificate in one of the ma	Science (Mathematics as ijor Subject)	Year: I	Semester: I Paper: DSC Maths1	
Subject: Math	ematics				
Course: DSC	Maths1	Course Title: Fundamenta	l Mathematics-I		
to study mathe	matics as one of	er is a fundamental course for of the major subjects for their o understand other courses e	r graduation degre	ee. It gives basic	
Credits: 4				Discipline Specific Course	
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules	
Unit	Content			Number of Hours	
Unit I Theory of Equations: Relations between Roots and Coefficients of algebraic equations, Transformation of equations, Descartes rule of signs, Solutions of Cubic and Bi-quadratic equations.				10-15	
Unit II				12-15	

	matrix, eigenvalues, eigenvectors, Cayley-Hamilton theorem.	
Unit III	Trigonometry: Complex numbers with elementary properties, De-Moivre's theorem, Exponential Functions, Euler's theorem, Circular and hyperbolic functions of complex variables together with their inverses, Logarithmic Functions, Gregory's series, Summation of Trigonometric series.	10-15
Unit IV	Vector Calculus: Dot product, cross product and their geometric interpretation, Triple products, Reciprocal vectors, Ordinary differentiation of vectors, Differential operators-Del, Gradient, Divergence and Curl, Line, surface and volume integrals, Simple applications of Gauss divergence theorem, Green's theorem and Stokes' theorem.	12-15

C. C. MacDuffee: *Theory of Equations*, John Wiley & Sons, 1954.

Shanti Narayan and P. K. Mittal: A Text Book of Vector Calculus, S. Chand & Company, 1987. J. G. Chakravorty and P. R. Ghosh: *Analytical Geometry and Vector Analysis*, U. N. Dhur & Sons Pvt. Ltd, 1973.

Murray Spiegel, Seymour Lipschutz and Dennis Spellman: *Vector Analysis*, Schaum's Outline Series, McGraw Hill Edition, 2017.

R. K. Sharma, S. K. Shah and A. G. Shankar: *Complex Numbers and the Theory of Equations*, Anthem Press, 2011.

N. Saran and S. N. Nigam: *Introduction to vector analysis*, Pothishala publication, Allahabad, 1990. Further Readings:

William Snow Burnside and Arthur William Panton: *The Theory of Equations Vol. I*, Nabu Press, 2011.

Leonard E. Dickson: First Course in the Theory of Equations, Merchant Books, 2009.

Fuzhen Zhang: Matrix Theory- Basic Results and Techniques, Springer, 1999.

K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India, 2004.

Semester-II

Certificate in Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC COURSE (DSC Maths2)- Fundamental Mathematics -II

No. of Hours: 50-60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	Credits	Credit distribut		Eligibility	Pre-requisite	
		Lecture	Tutorial	Practical/Practice		of the course (if any)
DSC Maths2: Fundamental Mathematics- II	4	3	2	0	Passed Class XII with Mathematics	Nil

Cartificate	Caiamaa (M-41-	ometica ea eme efthe	- C-hiaat)		
Certificate in	Science (Math	ematics as one of the majo	or Subject)		
Programme:	Certificate in one of the ma	Science (Mathematics as jor Subject)	Year: I	Semester: II Paper: DSC Maths2	
Subject: Math	ematics				
Course: DSC	Maths2	Course Title: Fundamental	Mathematics-II		
to study mathe	matics as one o	r is a fundamental course for f the major subjects for their understand other courses e	r graduation degre	e. It gives basic	
Credits: 4				Discipline Specific Course	
Max. Marks: As	Min. Passing Marks: As per Univ. rules				
Unit	Content			Number of Hours	
Unit I Preliminaries: Sets, Operations on sets, Index set and family of sets, Relations, Equivalence relations and partitions, Functions, Composition of functions, Infinite sets and cardinality, Cantor set, Principle of mathematical induction.				10-15	
Unit II Numerical Sequence and Series: Sequences, theorems limit of sequences, Infinite series, series of non-negative terms, Various tests for convergence, Alternating series. Leibnitz's theorem, Absolute convergence, Conditional			of non-negative ernating series,	12-15	

convergence.

Unit III	Partial Derivatives: Functions of more than one variable, Partial Derivatives, Euler's Theorem for Homogeneous Functions, Jacobians and their applications, Chain rule.	12-15
Unit IV	Polar Geometry: Polar coordinate system, Polar equation of a conic, Chords, Tangent and Normal to a conic, Tracing of conics.	10-15

C. C. MacDuffee: *Theory of Equations*, John Wiley & Sons, 1954.

Shanti Narayan and P. K. Mittal: A Text Book of Vector Calculus, S. Chand & Company, 1987. J. G. Chakravorty and P. R. Ghosh: *Analytical Geometry and Vector Analysis*, U. N. Dhur & Sons Pvt. Ltd, 1973.

Murray Spiegel, Seymour Lipschutz and Dennis Spellman: *Vector Analysis*, Schaum's Outline Series, McGraw Hill Edition, 2017.

R. K. Sharma, S. K. Shah and A. G. Shankar: *Complex Numbers and the Theory of Equations*, Anthem Press, 2011.

N. Saran and S. N. Nigam: *Introduction to vector analysis*, Pothishala publication, Allahabad, 1990. Further Readings:

William Snow Burnside and Arthur William Panton: *The Theory of Equations Vol. I*, Nabu Press, 2011

Leonard E. Dickson: First Course in the Theory of Equations, Merchant Books, 2009.

Fuzhen Zhang: Matrix Theory- Basic Results and Techniques, Springer, 1999.

K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India, 2004.

Semester-III

Diploma in Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC COURSE (DSC Maths3)- Differential Calculus

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility Pre-requisit	
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC Maths3: Differential Calculus	4	3	2	0	Passed Class XII with Mathematics	Completed DSC Maths1 and DSC Maths2

Programme:	Diploma in Science (Mathematics as one of the major Subject)		Year: II	Semester: III Paper: DSC Maths3
Subject: Math	ematics			
Course: DSC				
problems. Afte	r completing th	t relates and gives an analytic nis course students will be abl pts in other areas of study esp	le to understan	d basic concepts of calculu
Max. Marks: As	per Univ. rules			Min. Passing Marks: As pe Univ. rules
Unit	Content			Number of Hours
Unit I	variable, Lim continuous fu Differentiabil value theoren Applications Differentiatio	nuity and Differentiability: Fu it and Continuity of a function anctions, Classification of Dis- ity of a function, Rolle's The as and their geometrical inter- of mean value theorems. Suc- on, nth Differential coefficient orem; Taylor's Theorem, Mac	n, Properties of continuities, orem, Mean pretations, cessive of functions,	f 10-15

	Theorem, Taylor's and Maclaurin's series expansions, Indeterminate forms.	
Unit II	Tangents and Normals: Geometrical meaning of dy/dx, Definition and equation of Tangent and Normal, Tangent at origin, Angle of intersection of two curves, Subtangent and Subnormal, Tangents and Normals of polar curves, Angle between radius vector and tangent, Perpendicular from pole to tangent, Pedal equation of curve, Polar subtangent and polar subnormal, Intrinsic equations.	12-15
Unit III	Curvature and Asymptotes: Curvature, Radius of curvature; Cartesian, Polar and pedal formula for radius of curvature, Tangential polar form, Centre of curvature, Asymptotes of algebraic curves, Methods of finding asymptotes, Parallel asymptotes.	12-15
Unit IV	Singular Points and Curve Tracing: Existence and classification of singular points, points of inflexion, Double Points, Cusp, Node and conjugate points, Curve tracing.	10-15

T. M. Apostol: Calculus Vol. I, John Willey & Sons, 1999.

Gorakh Prasad: Differential Calculus, Pothishala publication, Allahabad, 2016.

M. Ray, H. S. Sharma and S. S. Seth: *Differential Calculus*, Shiva Lal Agarwal & Company, Agra. Further Readings:

- S. Lang: A First Course in Calculus, Springer-Verlag New York Inc.,1986.
- H. Anton, I. Birens and S. Davis: Calculus, John Wiley & Sons, 2007.
- G. B. Thomas and R. L. Finney: Calculus, Pearson Education, 2010.
- S. Balachandra Rao and C. K. Shantha: *Differential Calculus*, New Age Publication, 1992. Frank Ayres and Elliott Mendelson: *Calculus*, Schaum's Outline Series, McGraw Hill Edition, 2009.

Semester-III

Diploma in Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths1)- Geometry

No. of Hours: 50-60

Course Title	Credits	Credit distribu	tion of the Cou	ırse	Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	riteria	of the course (if any)
DSE Maths 1: Geometry	4	3	2	0	Passed Class XII with Mathematics	Nil
Certificate in	Science (M	Iathematics as	one of the n	najor Subject)		

Certificate in	Science (Math	ematics as one of the majo	or Subject)	
Programme:	one of the major Subject)			Semester: III Paper: DSE Maths1
Subject: Math	ematics			
Course: DSE	Maths 3	Course Title: Geometry		
geometrical/gr mathematical c		se will enhance the understations. After studying this strically.	•	-
Credits: 4				Discipline Specific Elective
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules
Unit	Content			Number of Hours
Unit I Direction Cosines and the Plane: Cartesian co-ordinates in 3D, Direction cosines, direction ratios and their properties, Equation of a Plane in various forms, Two sides of a plane, Length of perpendicular from a point to a plane, Angle between two planes, System of planes, Transformation of coordinates.				
Unit II				12-15

	Definition and equation of a sphere, Plane section of a sphere, Intersection of two spheres, Sphere through a given circle, Intersection of a sphere and a line, Power of a point, Tangent plane, Plane of contact, Polar plane and polar lines, Pole of a plane, Conjugate points and conjugate planes, Angle of Intersection of two spheres. Radical axis and centre.	
Unit III	Cone and Cylinder: Definition and equation of a cone with various properties, Three mutually perpendicular generators, Intersection of a line with a cone, Tangent line and tangent plane, Reciprocal cone, Right circular cone, Definition and equation of a cylinder, Right circular cylinder, Enveloping cylinder, General equation of second degree.	12-15
Unit IV	The Conicoids: Central conicoids, Tangent plane, Director sphere, Normal, Plane of contact, Polar plane, Conjugate points, conjugate planes and conjugate lines, enveloping cone, Paraboloids, Plane sections of conicoids.	10-15

S.L. Loney: The Elements of Coordinate Geometry, McMillan and Company, London, 2018.

Shanti Narayan and P. K. Mittal: Analytical Solid Geometry, S. Chand & company, 2007.

P. K. Jain: A Textbook of Analytical Geometry, New Age Publication, 2014.

Jyoti Das: Analytical Geometry, Academic Publisher, 2011.

J. G. Chakravorty and P. R. Ghosh: *Analytical Geometry and Vector Analysis*, U. N. Dhur & Sons Pvt. Ltd, 1973.

Further Readings:

Henry B. Fine and H. D. Thompson: Coordinate Geometry, The Macmillan company, 1909.

George B. Thomas and Ross L. Finney: Calculus and Analytic Geometry, Pearson Education, 2010.

Robert J. T. Bell: *An Elementary Treatise on Coordinate Geometry of three dimensions*, Macmillan India Ltd., 1923.

P. R. Vittal: Analytical Geometry-2D & 3D, Pearson Education, 2013.

Manicavachagom T.K. Pillay: A Textbook of Analytical Geometry (Part: 1 & 2), Viswanathan, S.,

Printers & Publishers Pvt Ltd, 2009.

Semester-IV

Diploma in Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC COURSE (DSC Maths4)- Integral Calculus

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility Pre-requisite	
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC Maths4: Integral Calculus	4	3	2	0	Passed Class XII with Mathematics	Completed DSC Maths2 and DSC Maths3

Programme:	Diploma in Science (Mathematics as one of the major Subject)		Year: II	Semester: IV Paper: DSC Maths4
Subject: Math	ematics			
Course: DSC	Maths4	Course Title: Integral Calcu	lus	
problems. Afte	er completing thi	relates and gives an analytic s course students will be abl ts in other areas of study esp	e to understand	l basic concepts of calculu
Max. Marks: As	per Univ. rules			Min. Passing Marks: As pe Univ. rules
Unit	Content			Number of Hours
Unit I	of Definite inte	rals: Integral as a limit of suegrals, Summation of series and integration under the in	by integration,	10-15
Unit II	function, Recu between Beta a	nma function: Beta function rrence formula and other reland Gamma function, Evaluate Beta and Gamma functions	ations, Relation	12-15

Unit III	Multiple Integrals: Double integrals, Repeated integrals, Evaluation of Double integrals, Double integral in polar coordinates, Change of order of integration in Double integrals, Triple integrals, Evaluation of Triple integrals, Dirichlet's theorem and its Liouvelle's extension.	12-15
Unit IV	Geometrical Applications of Definite Integrals: Area bounded by curves (quadrature), Rectification (length of curves), Volumes and Surfaces of Solids of revolution.	10-15

- T. M. Apostol: Calculus Vol. I, John Willey & Sons, 1999.
- M. Ray, H. S. Sharma and S. S. Seth: Differential Calculus, Shiva Lal Agarwal & Company, Agra.
- M. Ray, H. S. Sharma and S. S. Seth: *Integral Calculus*, Shiva Lal Agarwal & Company, Agra. Further Readings:
- S. Lang: A First Course in Calculus, Springer-Verlag New York Inc.,1986.
- H. Anton, I. Birens and S. Davis: Calculus, John Wiley & Sons, 2007.
- G. B. Thomas and R. L. Finney: Calculus, Pearson Education, 2010.
- S. Balachandra Rao and C. K. Shantha: *Differential Calculus*, New Age Publication, 1992. Frank Ayres and Elliott Mendelson: *Calculus*, Schaum's Outline Series, McGraw Hill Edition, 2009

Semester-IV

Diploma in Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths2)- Group Theory

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility Pre-requisit	
		Lecture	Tutorial	Practical/Practice	rcriteria	of the course (if any)
DSE Maths2: Group Theory	4	3	2	0	Passed Class XII with Mathematics	Completed DSC Maths1 and DSC Maths2

Programme:	Diploma in Science (Mathematics as one of the major Subject)	Year: II	Semester: III Paper: DSE Maths2
Subject: Math	ematics		· -
Course: DSE	Maths2 Course Title: Group Theory		
properties. It w structures in ch	mes: This course is useful to understand the ill help the students for better understanding emistry and certain concepts of physics.		cts, especially atomic
Credits: 4			Discipline Specific Electiv
Max. Marks: As	per Univ. rules		Min. Passing Marks: As po Univ. rules
Unit	Content		Number of Hours
Unit I Groups: Binary operation and Algebraic structure, Abelian groups, Noncommutative groups and Subgroups.			10-15
Unit II Permutation groups, Cyclic groups, Coset decomposition, Lagrange theorem and its consequences,			, 10-15
Unit III	Normal subgroups, Quotient group, Homor Isomorphism, Fundamental theorems of ho Cayley's theorem.	12-15	

groups and their computation, Normalizer and center of group, Finite groups, Commutator subgroups.	
--	--

I. N. Herstein: *Topics in Algebra*, John Wiley & Sons, 2006.

Joseph A. Gallian: *Contemporary Abstract Algebr*, Narosa Publishing House, 2016. David S. Dummit and Richard M. Foote: *Abstract Algebra*, John Wiley & Sons, 2011.

Surjeet Singh and Qazi Zameeruddin: Modern Algebra, Vikas Publishing House, India, 2021.

Further Readings:

Michael Artin: Algebra, Pearson Education, 2015.

N. Jacobson: Lectures in Abstract Algebra-Vol. I, II & III, Springer, 2013.

N. Jacobson: Basic Algebra-Vol. I & II, Dover Publications Inc., 2009.

R. S. Aggarwal: A Textbook on Modern Algebra, S Chand & Company, 1973.

Semester-V

Bachelor of Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC COURSE (DSC Maths5)- Analysis

No. of Hours: 50-60

	Lecture 3	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC Maths5: 4	3	2	0		
Analysis		2	0	Passed diploma in Science with Mathematics	Completed DSC Maths3 and DSC Maths4

Bachelor of So	cience (Mather	natics as one of the major S	ubject)			
Programme:	Bachelor of S of the major S	Science (Mathematics as one Subject)	Year: III	Semester: V Paper: DSC Maths5		
Subject: Math	ematics					
Course: DSC	Maths5					
		concepts of Real analysis have he behavior of real numbers a				
Credits: 4				Discipline Specific Course		
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules		
Unit	Content			Number of Hours		
Unit I	Topology of Real line: Complete ordered field, Archimedean Property, Supremum, infimum, Neighbourhood of a point, Interior of a set, open set closed set, Derived set, Closure of a set, Bolzano- Weierstrass Theorem, Brief introduction of compact and connectedness.			10-15		

Unit II	Integration: Riemann integral-definition and properties, Integrability of continuous and monotonic functions, Fundamental theorem of Calculus, Improper integrals and their convergence.	12-15
Unit III	Limit, continuity and differentiability of functions of a complex variable, Cauchy-Riemann equations, Analytic functions, Harmonic conjugates and Harmonic functions.	12-15
Unit IV	Line Integration, Cauchy's theorem, Cauchy's integral formula, Taylor's series, Laurent's series, Poles and singularities. Residues, The Residue theorem, Evaluation of Improper real integrals.	12-15

Walter Rudin: Principle of Mathematical Analysis, McGraw Hill Edition, 1976.

R. G. Bartle and D. R. Sherbert: Introduction to Real Analysis, John Wiley & Sons, 1999.

T. M. Apostol: Mathematical Analysis, Narosa Publishing House, New Delhi, 1985.

Further Readings:

Richard R. Goldberg: Methods of Real Analysis, John Wiley & Sons, 1976.

James R. Munkres: *Analysis on Manifolds*, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1991.

H. L. Royden: Real Analysis, Macmillan Publishing Company, New York, 1988.

G. F. Simmons: Introduction to Topology and Modern Analysis, McGraw Hill Edition, 2011.

Semester-V

Bachelor of Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths3)- Ring Theory

No. of Hours: 50-60

Course Title Cree	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths3: Ring Theory	4	3	2	0	Passed Class XII with Mathematics	Completed DSE Maths1

Programme:	Bachelor of S of the major S	Science (Mathematics as one Subject)	Year: III	Semester: V Paper: DSE Maths3
Subject: Math	ematics	·		· -
Course: DSE				
properties. It w structures in ch	ill help the stud	se is useful to understand the dents for better understanding rtain concepts of physics.	-	ects, especially atomic
Credits: 4	Discipline Specific Elective			
Max. Marks: As	per Univ. rules			Min. Passing Marks: As p Univ. rules
Unit	Content			Number of Hours
Unit I	Parit I Rings and their examples, Sub rings, Commutative rings, Divisors of zero, Integral domain, Inverse of an element in a ring, Field.			
Unit II				12-15

Unit III	Principal ideals, Maximal ideals, Prime ideals, Principal ideal domains, Polynomial rings and irreducibility.	12-15
Unit IV	Field of quotients of an integral domain, Embedding of an integral domain in a field, Factorization in an integral domain.	12-15

I. N. Herstein: *Topics in Algebra*, John Wiley & Sons, 2006.

Joseph A. Gallian: Contemporary Abstract Algebr, Narosa Publishing House, 2016.

David S. Dummit and Richard M. Foote: Abstract Algebra, John Wiley & Sons, 2011.

Surjeet Singh and Qazi Zameeruddin: Modern Algebra, Vikas Publishing House, India, 2021.

Further Readings:

Michael Artin: Algebra, Pearson Education, 2015.

N. Jacobson: Lectures in Abstract Algebra-Vol. I, II & III, Springer, 2013.

N. Jacobson: Basic Algebra-Vol. I & II, Dover Publications Inc., 2009.

R. S. Aggarwal: A Textbook on Modern Algebra, S Chand & Company, 1973.

Semester-VI

Bachelor of Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC COURSE (DSC Maths6)- Vector spaces and linear transformations

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC Maths6: Vector spaces and linear transformations	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSC Maths5

Programme:	Bachelor of Science of the major Sub	nce (Mathematics as one ject)	Year: III	Semester: VI Paper: DSC Maths6
Subject: Math	ematics			
Course: DSC Maths6 Course Title: Vector spaces and linear transf				nsformations
	theory used to sol	sful completion of this cover the mathematical problem.		Plps to enhance the critical Discipline Specific Course
Max. Marks: As	Min. Passing Marks: As pe Univ. rules			
Unit	nit Content			
Unit I	Vector space, subspaces, Linear combinations, linear spans, Sums and direct sums, Linear dependence and independence, Bases and dimensions, Dimensions and subspaces, Coordinates and change of bases.			12-15

Unit II	Linear transformations, rank-nullity theorem, Linear operators, Invertible linear transformations, Matrix representation of a linear transformation, Transpose of a linear transformation, Similarity of Matrices, Linear functional, Dual space and dual basis, Second dual space, hyperspace.	12-15
Unit III	Eigen values and Eigen vectors, Algebraic and Geometrical Multiplicity, Characteristic and Minimal Polynomials, Annihilators, Cayley-Hamilton theorem, Similar Matrices, Diagonalizable operator.	10-15
Unit IV	Invariant Subspaces, Direct sum decomposition, Projection on a vector space, Primary decomposition theorem, Canonical Forms, Diagonal forms, Triangular forms, Jordan forms.	10-15

K. Hoffman and R. Kunze: *Linear Algebra*, Prentice Hall of India, 1972.

K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India, 2004.

Seymour Lipschutz and Marc L. Lipson: *Linear Algebra*, Schaum's Outline Series, McGraw Hill Edition, 2017.

S. H. Friedberg, A. J. Insel and L. E. Spence: *Linear Algebra*, Pearson Education, 2015. Further Readings:

G. Hadley: Linear Algebra, Narosa Publishing House, 2002.

H. Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994.

Gilbert Strang: Linear Algebra and its Applications, Cengage Learning India, 2005.

Semester-VI

Bachelor of Science (Mathematics as one of the major Subject)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths4)- Differential Equations

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths4: Differential Equations	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSC Maths3 and DSC Maths4

Bachelor of So	cience (Mathematics as one of the majo	or Subject)	
Programme:	Bachelor of Science (Mathematics as o of the major Subject)	ne Year: III	Semester: VI Paper: DSE Maths4
Subject: Math	ematics		
Course: DSE			
solutions. This	mes: This paper provides detailed knowl course is useful for the students to solve o understand typical problems of physics	not only mathema	tical problems in daily life
Credits: 4			Discipline Specific Elective
Max. Marks: As	Min. Passing Marks: As per Univ. rules		
Unit	Content	Number of Hours	
Unit I	Order and Degree of Differential Equations primitive (general solution, particular solutions), Existence and uniqueness of dy/dx= f(x,y). Differential equations of degree, Separation of variables, Homog Linear Differential Equations, Exact Di Equations, Integrating Factor, Equation not of first degree, variation of parameter form, Singular solutions, Trajectory, Or Trajectory, Self-Orthogonal family of Committee of Co	t	

Unit II	Linear Differential Equations: Linear equations with constant coefficients, Complementary function, Particular integral, working rule for finding solution, Homogeneous linear equations. Linear differential equations of second order with variable coefficients.	12-15
Unit III	Miscellaneous Equations: Simultaneous differential equations, Differential equations of the form dx/P= dy/Q= dz/R where P, Q, R are functions of x, y and z, Exact differential equations, Total differential equations, Series solutions of differential equations,	12-15
Unit IV	Laplace Transformation, Inverse Laplace Transformation, Applications to solve Differential equations	10-15

G. F. Simmons: Differential Equations with Application and Historical Notes, McGraw Hill Edition, 2002

Shepley L. Ross: Differential Equations, John Wiley & Sons, 1984.

M. D. Raisinghania: Ordinary & Partial Differential Equation, S. Chand & Co. Ltd, 2017.

B. Rai, D. P. Choudhary and H. J. Freedman: A Course of Ordinary Differential Equations, Narosa, 2002.

Further Readings:

Earl A. Coddington and Norman Levinson: *Theory of Ordinary Differential Equations*, McGraw-Hill Edition, 1998.

Ravi P. Agarwal and Donal O'Regan: Ordinary and Partial Differential Equations, Springer, 2009.

Martin Braun: Differential Equations and Their Applications, Sringer, 1993.

Erwin Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 2011.

Ian N. Snedden: Elements of Partial Differential Equations, Dover Publication, 2013.

Semester-VII

Bachelor of Science (Honors)

DISCIPLINE SPECIFIC COURSE (DSC Maths7)- Real Analysis

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC Maths7: Real Analysis	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSC Maths5
Bachelor of Sc	ience (Ho	nors)				

Bachelor of So	cience (Honor	s)			
Programme:	Bachelor of S	Science (Honors)	Year: IV	Semester: VII Paper: DSC Maths7	
Subject: Math	ematics		'		
Course: DSC Maths7 Course Title: Real Analysis					
		-		n this course with a view etric or distance function.	
Credits: 4				Discipline Specific Course	
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules	
Unit	Content			Number of Hours	
Unit I	Metric spaces: metric, Various examples, of metric spaces, open sets, interior of a set, Structure of open subsets of the real line, limit points, closed sets, closure of a set, Cauchy sequences, completeness.			12-15	

Unit II	Functions of several variables: Concept of functions of two variables, Simultaneous and iterated limits in functions of two variables, Partial derivatives: Definition, Existence and continuity, Interchange of order of differentiation, Directional derivatives.	12-15
Unit III	Composite functions, Linear Continuity of function of two variables, differentiability of functions of two variables, Taylor's Theorem.	10-15
Unit IV	Linear transformation, Vector Valued functions, Differentiation of vector valued functions, inverse function theorem, implicit function theorem.	10-15

- S. C. Malik and Savita Arora: Mathematical Analysis, New Age International.
- G.F. Simmons: Introduction to Topology and Modern Analysis, Tata McGraw Hill.
- T. M. Apostol: Mathematical Analysis, Narosa Publishing House, New Delhi, 1985.

Further Readings:

W. Rudin: Principles of Mathematical Analysis (3rd edition), Tata Mc Graw Hill Kgakusha, International Student Edition, 1976.

Richard R. Goldberg: Methods of Real Analysis, John Wiley & Sons, 1976.

Semester-VII

Bachelor of Science (Honors)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths5)- Topology

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths5: Topology	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3

Bachelor of So	cience (Honors				
Programme:	Bachelor of S	cience (Honors)	Year: IV	Semester: VII Paper: DSE Maths5	
Subject: Math	ematics				
Course: DSE	Maths5	Course Title: Topology			
other mathema their properties disciplines of p	tical objects. T s. It will help th	e students for better und	erstand the concepts o	of topologies on a set and matical and other	
Credits: 4				Discipline Specific Elective	
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules	
Unit	Content			Number of Hours	
Unit I Basic concepts in Topology: Topology on a set, a topological space with examples, topologies on the real number system.			•	10-15	
Unit II	Neighborhood of a point/set, Open and closed sets, interior, boundary, closure, limit point, Derived sets of set, Base and sub-base of a topology, Separable Space First and Second Countable spaces.			12-15	

Unit III	Continuous map, open and closed maps, homeomorphisms, Topological invariants, Pasting Lemma, Subspaces, product spaces, quotient space.	10-15
Unit IV	Compactness, Compact spaces, Compactness of a metric space, Connectedness, connected space, components. Separation axioms: T_1 , T_2 , T_3 , $T_{3\frac{1}{2}}$, T_4 , regular, completely regular and normal space.	12-15

J. R. Munkres: Topology: Narosa Publishing House.

Shaum's outlines series: Tata McGraw Hill.

K. D. Joshi: Introduction to General Topology, Wiley Eastern, 1983.

M. D. Raisinghania & R. S. Aggarwal: Topology, S. Chand & Co.

Further Readings:

G. F. Simmons: Introduction to Topology and Modern Analysis, McGraw Hill, 1963.

Semester-VII

Bachelor of Science (Honors)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths6)- Differential Geometry

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths6: Differential Geometry	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3

Bachelor of So	cience (Honors	s)		
Programme:	Bachelor of S	cience (Honors)	Year: IV	Semester: VII Paper: DSE Maths6
Subject: Math	ematics		1	•
Course: DSE	Maths6	Course Title: Differential G	eometry	
properties usin	g differential c	se is useful to understand the alculus. It will help the studer uctures in chemistry and certain	nts for better und	lerstanding of other
Max. Marks: As	Min. Passing Marks: As per			
Max. Marks: As	per Oniv. rules			Univ. rules
Unit	Content			Number of Hours
Unit I	Curve in space, parameterized curves, regular curves, helices, arc length, reparameterization (by arc length), Tangent, principal normal, binormal, osculating plane, normal plane, rectifying plane, curvature torsion of smooth curves, Frenet- Serret formulae, Frenet approximation of space curve.			12-15
Unit II	Order of cont Spherical ind	10-15		

	Curves, intrinsic equations of space curves, isometries of R^3 , Fundamental theorem of space curves, surfaces in R^3 .	
Unit III	Regular Surfaces, coordinates neighborhoods, parameterized surfaces, change of parameters, level sets of smooth functions on R^3 , surfaces of revolution, mean curvature, tangent vector, first and second fundamental forms, classification of points on a surface	12-15
Unit IV	Curvature of curve on surfaces, normal curvature, Meusnier theorem, principle curvatures, geometric interpretation of principal curvatures, Euler theorem, mean curvature, line of curvature, Rodrigue's formula, umbilical points, minimal surfaces, definition and examples, Gaussian curvature.	12-15

D. Somasundaram: Differential Geometry, A First Course, Narosa Publishing House, New Delhi, 2005.

Andrew Pressley: Elementary Differential Geometry, Springer (Undergraduate Mathematics Series), 2001.

T.J.Willmore: An Introduction To Differential Geometry, Oxford University Press.

Further Readings:

J. A. Thorpe: Elementary Topics in Differential Geometry, Springer (Undergraduate Texts in Mathematics), 1979.

B.O.Niell: Elementary Differential Geometry, Academic Press.

Do Carmo: Curves and surfaces,

Semester-VII

Bachelor of Science (Honors)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths7)- Dynamics of Rigid Bodies

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths7: Dynamics of Rigid Bodies	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3

Bachelor of S	Science (Honors	s)			
Programme :	Bachelor of S	Science (Honors)	Year: IV	Semester: VII Paper: DSE Maths7	
Subject: Matl	nematics			· -	
Course: DSE Maths7 Course Title: I			cs of Rigid Bodies		
	nts for better un		-	otion of rigid bodies. It will in engineering and certain	
Credits: 4				Discipline Specific Elective	
Max. Marks: A	s per Univ. rules			Min. Passing Marks: As per Univ. rules	
Unit	Content			Number of Hours	
Unit I	D'Alembert's principle, Motion about a fixed axis (Finite and Impulsive forces).			10-15	
Unit II	Motion in two dimensions under Finite and Impulsive forces, Principle of conservation of momentum and energy.			12-15	
Unit III	Lagrange's e	quations in generalized	co-ordinates.	10-15	

Unit IV	Hamilton's principle, principle of least action, Euler's geometrical and dynamical equations.	12-15

Bhu Dev Sharma: Dynamics of Rigid Bodies, Kedarnath Ramnath Sons, 1984.

M. Ray & Harswarup Sharma: A text book of Dynamics of Rigid Body, Students' Friends &Co.,

Agra-2, 1971.

H. Goldstein: Classical Mechanics, Narosa, 1990.

Further Readings:

S. L. Loney: Dynamics of rigid bodies.

A. S. Ramsey: Dynamics – Part II.

Semester-VIII

Bachelor of Science (Honors)

DISCIPLINE SPECIFIC COURSE (DSC Maths8)- Complex Analysis

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC Maths8: Complex Analysis	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSC Maths5

Programme :	Bachelor of	Science (Honors)	Year: IV	Semester: VIII Paper: DSC Maths8	
Subject: Math	ematics				
Course: DSC Maths8		Course Title: Complex Analysis			
understand the thinking of the	theory used to	ccessful completion of the solve the mathematical		ps to enhance the critical	
Credits: 4	Discipline Specific Course				
Max. Marks: As	Min. Passing Marks: As pe Univ. rules				
Unit	Content		Number of Hours		
Unit I	Conformal ranalytic fund Riemann spl transformaticircles.	12-15			
Unit II	Derivative o derivatives, theorem, Ca	12-15			

Unit III	Counting zeros, The open mapping theorem, Maximum modulus principle, Schwarz lemma, The fundamental theorem of algebra.	12-15
Unit IV	Entire functions, Hadmard's three circle theorem, Jensen's formula, Meromorphic functions.	12-15

- J. B. Conway: Functions of One Complex Variable, Narosa Publishing House, 1980.
- R. V. Churchil and J. W. Brown and R. F. Verhey: *Complex Variables and Applications*, McGraw Hill Edition, 1976.

Further Readings:

- L. V. Ahlfors: Complex Analysis, McGraw Hill Edition, 1977.
- E. T. Copson: Complex Variables, Oxford University Press.

Richard R. Goldberg: Methods of Real Analysis, John Wiley & Sons, 1976.

D. Sarason: Complex Function Theory, Hindustan Book Agency, Delhi, 1994.

James R. Munkres: *Analysis on Manifolds*, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1991.

- H. L. Royden: Real Analysis, Macmillan Publishing Company, New York, 1988.
- G. F. Simmons: Introduction to Topology and Modern Analysis, McGraw Hill Edition, 2011.

Semester-VIII

Bachelor of Science (Honors)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths8)- Algebra

No. of Hours: 50-60

DSE Maths8: 4 3	eture T	Tutorial	Practical/Practice	criteria	of the course (if any)
	2	2	0		
Algebra		2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3

Bachelor of So	cience (Honor	s)		
Programme:	Bachelor of S	Science (Honors)	Semester: VIII Paper: DSE Maths8	
Subject: Mathe	ematics			
Course: DSE	Maths8	Course Title: Algebra		
especially grou		rse will help students to unders	tand the conce	ept of algebraic structures
Credits: 4				Discipline Specific Elective
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules
Unit	Content			Number of Hours
Unit I	Normal and subnormal series, composition series, Jordan Holder theorem, chain conditions.			12-15
Unit II	Unit II Commentators. Solvable groups, solvability of subgroups and factor groups. Nilpotent groups and their equivalent characterizations.			13-15
Unit III	Factorization irreducible el Domain. Div	prime and maximal ideals, que theory in commutative domain ements, Euclidean Domains. P isor chain condition. Unique Fa ynomial rings over domains. E	ns. Prime and rincipal Ideal actorization	15-18

	irreducibility criterion. Unique factorization in polynomial rings over UFDs.	
Unit IV	Fields, finite fields, field extensions, Galois extensions.	10-15

J. Gallian: Abstract Algebra, Narosa Publication.

Ramji Lal: Fundamentals in Abstract Algebra, Chakra Prakashan, Allahabad, 1985.

I. N. Herstein: Topics in Algebra, Wiley Eastern Ltd., N.D., 1975.

Further Readings:

M. Artin: Algebra, Prentice Hall of India.

N. Jacobson: Basic Algebra, Vol. I, Hindustan Publishing Co., New Delhi.

D. S. Dummit and R. M. Foote: Abstract Algebra, John Wiley, N. Y.

Semester-VIII

Bachelor of Science (Honors)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths9)- Partial Differential Equations

No. of Hours: 50-60

Course Title	Credits	Credit distribu	tion of the Cou	ırse		Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths9: Partial Differential Equations	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3
Bachelor of So	cience (Ho	nors)				

Bachelor of So	cience (Honors			
Programme:	Bachelor of Science (Honors) Year: IV			Semester: VIII Paper: DSE Maths9
Subject: Math	ematics		·	<u> </u>
Course: DSE	Maths9	Course Title: Partial D	rifferential Equations	
		any real-world problem help students to deal wi	•	rential equations are use differential equations Discipline Specific Elective
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules
Unit	Content			Number of Hours
Unit I	problems for first order ordinary differential equations, singular solutions of first order ODEs, system of first order ODEs., General theory of homogeneous and non-homogeneous linear ODEs, variation of parameters, Sturm-Liouville boundary value problem, Green's function.			10-15
Unit II	Formation of and singular i	PDEs, First order PDEs ntegrals, Lagrange's or egral surfaces through a	12-15	

	Orthogonal surfaces to a given system of surfaces, Characteristic curves.	
Unit III	Pfaffian differential equations, Compatible systems, Char pit's method, Jacobi's Method. Cauchy problem for first order PDEs.	12-15
Unit IV	Linear equations with constant coefficients, Reduction to canonical forms, Classification of second order PDEs, General solution of higher order PDEs with constant coefficients.	10-15

G. F. Simmons: Differential Equations with Application and Historical Notes, McGraw Hill Edition, 2002

Shepley L. Ross: Differential Equations, John Wiley & Sons, 1984.

M. D. Raisinghania: Ordinary & Partial Differential Equation, S. Chand & Co. Ltd, 2017.

B. Rai, D. P. Choudhary and H. J. Freedman: A Course of Ordinary Differential Equations, Narosa, 2002.

Further Readings:

Earl A. Coddington and Norman Levinson: Theory of Ordinary Differential Equations, McGraw-Hill Edition, 1998.

Ravi P. Agarwal and Donal O'Regan: Ordinary and Partial Differential Equations, Springer, 2009.

Martin Braun: Differential Equations and Their Applications, Sringer, 1993.

Erwin Kreyszig: Advanced Engineering Mathematics, John Wiley & Sons, 2011.

Ian N. Snedden: Elements of Partial Differential Equations, Dover Publication, 2013.

Semester-VIII

Bachelor of Science (Honors)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths10)- Tensor Calculus

No. of Hours: 50-60

Course Title	Credits	Credit distribu	tion of the Co	urse		Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths10: Tensor Calculus	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3
Docholow of Co					Mathematics	

Bachelor of So	cience (Honor	s)		
Programme:	Bachelor of S	Science (Honors)	Year: IV	Semester: VIII Paper: DSE Maths10
Subject: Math	ematics			· -
Course: DSE				
students will be	e benefitted by	*	This helps students t	nis course with a view that o understand various courses
Credits: 4				Discipline Specific Elective
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules
Unit	Content			Number of Hours
Unit I	coordinates, i vectors, tenso covariant ten operations or	al real vector space, trans invariants, contravariant ors of order two: contravasors and mixed tensors, la tensors: addition, subtrant, contraction and inner	and covariant ariant tensors, nigher order tensors action,	,
Unit II	•	nd skew symmetric tensor		10-15

Unit III	metric tensor, length of a curve, magnitude of vector, angle between two vectors, associated tensors, conjugate symmetric tensors,	12-15
Unit IV	Christoffel symbols, transformation rule and group property, covariant derivative, intrinsic derivative, Gradient, divergence and curl.	13-15

N. Islam: Tensors and their applications, New Age International Publishers, 2006. C.E. Weatherburn: Riemannian Geometry and Tensor Calculus.

B. Spain: Tensor Calculus.

Further Readings:

Master of Science (Mathematics)

DISCIPLINE SPECIFIC COURSE (DSC Maths9)- Linear Algebra

No. of Hours: 50-60

Course Title Credits		Credit distribut	tion of the Cou	rse	Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC Maths9: Linear Algebra	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSC Maths5

Master of Scie	ence (Mather	natics)		
Programme :	Master of S	cience (Mathematics)	Year: V	Semester: IX Paper: DSC Maths9
Subject: Math	ematics		'	<u> </u>
Course: DSC				
		e concepts of Linear Algebratand the behavior of math		
Credits: 4				Discipline Specific Course
Max. Marks: As	per Univ. rules			Min. Passing Marks: As pe Univ. rules
Unit Content				Number of Hours
Unit I A brief review of vector space, Inner products, Orthogonality, Best approximations, Projections, Cauchy- Schwartz inequality.			12-15	
Unit II Adjoint of a linear transformation, Self-adjoint transformations, Unitary operators.			12-15	
Unit III	Normal ope theorem.	10-15		

Unit IV	Eigen vectors and eigen values of a linear operator,	10-15
	Minimal polynomial of a linear operator and its relations	
	to characteristic polynomial, Caley-Hamilton theorem.	

K. Hoffman and R. Kunze: *Linear Algebra*, Prentice Hall of India, 1972.

K. B. Dutta: Matrix and Linear Algebra, Prentice Hall of India, 2004.

Seymour Lipschutz and Marc L. Lipson: *Linear Algebra*, Schaum's Outline Series, McGraw Hill Edition, 2017.

S. H. Friedberg, A. J. Insel and L. E. Spence: *Linear Algebra*, Pearson Education, 2015. Further Readings:

G. Hadley: *Linear Algebra*, Narosa Publishing House, 2002.

H. Helson: Linear Algebra, Hindustan Book Agency, New Delhi, 1994.

Gilbert Strang: Linear Algebra and its Applications, Cengage Learning India, 2005.

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths11)- Measure Theory

No. of Hours: 50-60

Lecture Tutorial Practical/Practice criteria of the course (if any) DSE Maths11: Measure Theory Lecture Tutorial Practical/Practice criteria of the course (if any) Passed diploma in Science with Mathematics	Course Title	Credits	Credit distribu	tion of the Cou	irse	Eligibility	Pre-requisite		
Measure Theory diploma in Science with DSE Maths3			Lecture	Tutorial	Practical/Practice	criteria			
	Measure	4	3	2	0	diploma in Science with			

Master of Scie	ence (Mathem	atics)		
Programme :	Master of Science (Mathematics) Year: V			Semester: IX Paper: DSE Maths11
Subject: Math	ematics		'	
Course: DSE Maths11 Course Title: Measure Theory				
		concepts of measure and understand the measure o		been included in this course tion over the sets.
Credits: 4				Discipline Specific Elective
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules
Unit	Content			Number of Hours
Unit I Countable sets, uncountable sets, relation between the cardinality of a nonempty set and the cardinality of its power set; Boolean ring, σ -ring, Boolean algebra and σ -algebra of sets, Set function.			12-15	
Unit II	Introduction, Lebesgue me Measurable f	10-15		

Unit III	The Riemann integral, The Lebesgue integral of a bounded function over a set of finite measure, The integral of nonnegative functions. The general Lebesgue integral, Convergence in measure.	12-15
Unit IV	Differentiation of monotone functions, Functions of bounded variation, Differentiation of an integral, Absolute continuity, Convex functions.	10-15

- P. K. Jain: Measure Theory, New Age International.
- P. R. Halmons: Measure Theory, Grand Text Mathematics, 14 Springer, 1994.
- I. K. Rana: An Introduction to Measure and Integration, (Second Edition), Narosa Publishing House, New Delhi, 2005.

Further Readings:

- E. T. Copson: Complex Variables, Oxford University Press. K.R. Parthasarathy: Introduction to Probability and Measure, TRIM 33, Hindustan Book Agency, New Delhi, 2005.
- E. Hewit and K. Stromberg: Real and Abstract Analysis, Springer, 1975.
- H. L. Royden: Real Analysis, Macmillan Publishing Company, New York, 1988.

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths12A)- Mathematical Statistics

No. of Hours: 50-60

Course Title	rse Title Credits Credit distribution of the Course					Pre-requisite
		Lecture	Tutorial	Practical/Practice	rriteria	of the course (if any)
DSE Maths12A: Mathematical Statistics	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3
Master of Science (Mathematics)						

Master of Scie	ence (Mathema	atics)		
Programme:	Master of Sci	ence (Mathematics)	Semester: IX Paper: DSE Maths12A	
Subject: Math	ematics			
Course: DSE	Maths12A	Course Title: Mathemat	ical Statistics	
		npletion of this course, st s mathematical methods.	udents will be enab	led to apply statistical
Credits: 4				Discipline Specific Elective
Max. Marks: As	Min. Passing Marks: As per Univ. rules			
Unit	Content			Number of Hours
Unit I	Descriptive S dispersion ske Sample space Baye's theore functions (un multivariate).	10-15		
Unit II	Mathematical generating fur cumulants. Proconvergence: Central limit	12-15		

	finite and countable state space, Poisson and birth- and-death processes.	
Unit III	Some standard discrete and continuous univariate distributions (Binomial, Poisson, Normal, Gamma and Beta), Distribution of order statistics and range.	10-15
Unit IV	Correlation, Rank correlation. Regression lines. Multiple and partial correlation of three variables only, Data reduction techniques: Principal component analysis, discriminant analysis, cluster analysis, canonical correlation.	12-15

M.G.Kendall: Advanced theory of statistics Vol. I &II, Charle's Griffiin & Co.

R. Hogg and A Craig: Introduction to Mathematical Statistics, Mac Millan & Co.

C.E. Weatherbun: A first course in Mathematical Statistics, The English Language Book Society And Cambridge University Press, 1961.

S.C. Gupta & V.K. Kapoor: Fundamentals of Mathematical Statistics, Sultan Chand & Co Further Readings:

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths12B)- Number Theory

No. of Hours: 50-60

Course Title	Credits	Credit distribut	tion of the Cou	rse	Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths12B: Number Theory	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3
Master of Science (Mathematics)						

Master of Scie	ince (maintille	aucs)		
Programme :	Master of Science (Mathematics) Year:V			Semester: IX Paper: DSE Maths12B
Subject: Math	ematics			· -
Course: DSE				
		concepts of numbers have havior of prime numbers		this course with a view thaters in a critical way.
Credits: 4		•		Discipline Specific Electiv
Max. Marks: As	Min. Passing Marks: As pe Univ. rules			
Unit	Content	Number of Hours		
Unit I	Prime Numbe series, Irration Quadratic Rec	8-10		
Unit II	Fermet's theorem, Wilson's theorem, Continued fractions, Approximation of irrational of rationals, Hurwitz theorem.			
Unit III	The fundamental theorem of arithmetic in K (1), $K(i)$, $K(\rho)$, Diophantine equation $X^2 + Y^2 = Z^2$, $X^4 + Y^4 = Z^4$, $aX^2 + bY^2 + cZ^2 = 0$, Quadratic fields, The arithmetic functions:			10-12

Unit IV	$d(n)$, $\sigma(n)$, $\mu(n)$ and $\varphi(n)$ including elementary result on	10-12
	their order and average order.	

G. H. Hardy and E. M. Wright: Introduction to the theory of numbers, Oxford University Press, 4th Edition.

D. M. Burton: Elementary Number Theory, 6th Edition, Tata McGraw Hill.

Thomas Koshy: Elementary Number Theory with Applications, Academic Press, 2nd Edition.

Kenneth H. Rosen: Elementary Number Theory and its Applications, Addison-Wesley

Publishing Company, 1986.

Further Readings:

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths13A)- Fluid Dynamics

Practical/Practice

No. of Hours: 50-60

(if any)

Pre-requisite of the course

Eligibility

criteria

12-15

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Tutorial

Credit distribution of the Course

Course Title

Unit II

Credits

Lecture

DSE Maths13A: Fluid Dynamics	4	3	2	0		Passed diploma in Science with Mathematics	Completed DSE Maths3
Master of Scie	ence (Matho	ematics)					
Programme:	Master of	Science (Mat	thematics)		Year: V	Semester: I Paper: DSE	
Subject: Math	ematics						
Course: DSE Maths13A Course Title: Fluid Dynamics							
Course Outcomers		ourse will en	able students	s to und	erstand how the	motion of flu	ids is studie
Credits: 4						Discipline Specific Elective	
Max. Marks: As per Univ. rules					Min. Passing Marks: As per Univ. rules		
Unit	Content					Number of Hours	
Unit I	Unit I Lagrangian and Eulerian methods, Equation of continuity, Boundary surface, Stream lines, Velocity potential, Euler's					10-15	

equation of motions, Bernoulli's theorem, Helmholtz equations, Cauchy's integral, Equation of action under

Motion in two dimensions, Velocity potential and current

functions, Sources and sinks, Doublet and images, Circle theorem, Motion of circular and elliptic cylinder in two dimensions, Joukowski transformation, Motion in three dimensions, Three dimensional sources, Sinks and

impulsive forces, Principal of energy.

	doublets, Image of source in front of sphere, Motion of spheres, Stroke's stream function.	
Unit III	General theory of irrotational motion, Permanence of irrotational motion circulation, Stroke's theorem, Kelvin's circulation theorem, Green's theorem, Kelvin's minimum energy theorem, Conformal Representation, Kutta and Joukowski transformation, Theorems of Schwartz Christoffel.	12-15
Unit IV	Vortex motion: Rectilinear vortices, Rectilinear vortex with a circular section, An infinite row of parallel rectilinear vortices, Karman stream, Use of conformal transformation, Vortex pairs.	10-15

A. S. Ramsey: A Treatise on Hydrodynamics.

W. H.Besant and A. S. Ramsey: A Treatise on Hydrodynamics, CBS Publisher and Distributiors, Delhi, 1988.

M. D. Raisinghania: Fluid Dynamics, S. Chand, 1939

Further Readings:

F. Chorlton: A Text Book of Fluid Dynamics, CBC, 1985.

S .W. Yuan: Foundations of Fluid Dynamics, Prentice-Hall of India,1988.

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths13B)- Discrete Mathematics

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite		
		Lecture	Tutorial	Practical/Practice	rriteria	of the course (if any)		
DSE Maths13B: Discrete Mathematics	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3		
Master of Science (Mathematics)								

Master of Scie	ence (Mathema	itics)			
Programme :	Master of Science (Mathematics) Year: V			Semester: IX Paper: DSE Maths13B	
Subject: Math	ematics		'		
Course: DSE	Maths13B	Course Title: Discrete M	Mathematics		
		se will enable students to plines of mathematical sc		-	
Credits: 4				Discipline Specific Electiv	
Max. Marks: As	per Univ. rules			Min. Passing Marks: As pe Univ. rules	
Unit	Content	Number of Hours			
Unit I	Principle of m Lattices: Latti Properties, La duality, Sub la Distributive la	12-15			
Unit II	Boolean algebapplications	10-15			
Unit III	Elements of graph theory: Basic terminology, Paths and circuits, Eulerian and Hamiltonian graphs, planar graphs, Directed graphs.				

Unit IV	Trees: Rooted trees, path lengths, spanning trees,	12-15
	minimum spanning trees.	

C. L. Liu: Elements of discrete mathematics, Tata McGraw Hill Education, 2008.

Ram Babu: Disrete Mathematics, Pearson Edition India, 2011. Lipschutz: Disrete Mathematics, Tata McGraw Hill, 2011.

Further Readings:

Master of Science (Mathematics)

DISCIPLINE SPECIFIC COURSE (DSC Maths10)- Functional Analysis

No. of Hours: 50-60

Course Title	Credits	Credit distribu	Credit distribution of the Course			Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSC Maths10: Functional Analysis	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSC Maths5
Master of Sois	(D.F. d)	4.				

Master of Scie	ence (Mathem	atics)		
Programme :	Master of Science (Mathematics) Year: V			Semester: X Paper: DSC Maths 10
Subject: Math	ematics		,	
Course: DSC				
		concepts of Functional A rstand the behavior of fun	•	
Credits: 4				Discipline Specific Course
Max. Marks: As	Min. Passing Marks: As pe Univ. rules			
Unit	Content	Number of Hours		
Unit I	Metric conve Space, Proper normed space dimension, li- linear operator functional on operators, Du	12-15		
Unit II	Inner product product space Orthonormal Self-Adjoint,	12-15		

Unit III	Fundamental Theorems of Normed and Banach Space: Zorn's Lemma, Hahn Banach Theorem, Hahn Banach Theorem for complex vector spaces and normed spaces, Applications to bounded linear fuctionals on C[a, b], Adjoint operators, Uniform boundedness theorem, strong and weak convergence, convergence of sequences of operators and functional, Applications of summability of sequences, Open mapping theorem and closed graph theorem.	10-15
Unit IV	Banach contraction principle, Applications of Banach's theorem to linear, differential and integral equations, Approximation in Normed spaces, Uniqueness, strict convexity, Uniform approximation, approximation in Hilbert spaces.	12-15

Erwin Kreyszig: Introductory Functional Analysis, Wiley India edition. G. F. Simmons: Introduction to Topology and Modern Analysis, McGraw Hill, 1963. A. E. Taylor: Introduction to Functional Analysis, John Wiley, 1958.

R. E. Edwards: Functional Analysis, Holt Rinehart and Winston, 1965

Further Readings:

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths14)- Numerical Methods

No. of Hours: 50-60

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Title	_	Credit distribution of the Course				Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Pr	ractice	rcriteria	of the course (if any)
DSE Maths14: Numerical Methods Master of Scien	4 nce (Math	ematics)	2	0		Passed diploma in Science with Mathematics	Completed DSE Maths3
Programme:	ramme: Master of Science (Mathematics) Year:V					Semester: X Paper: DSE Maths14	
Subject: Mathe	ematics			'		1	
Course: DSE Maths14 Course Title: Numerical Me				al Methods			

Course Outcomes: This course will help students to extend their understanding of mathematical tools and they will be able to use new methods of problem solving. Credits: 4 Discipline Specific Elective Max. Marks: As per Univ. rules Min. Passing Marks: As per Univ. rules Unit Content Number of Hours Unit I Errors in numerical Calculations: Absolute, Relative, 10-15 Percentage errors, General Error, Error in series approximation. Solutions of Algebraic and Transcendental Equation: Bisection method, false position method, Newton-Raphson and generalized Newton's Method, Graffe's root squaring method, Lin Bairstow's method, Picards iteration method, convergence and error estimates of iterative methods. Unit II Linear systems of equations: Consistency of Linear 12-15 System of equations, Solutions of Linear Systems by directs method: Guassian elimination and computation of inverse of a matrix, Method of Factorization, Solutions of

	Tridiagonal systems and ill conditioned linear systems. Solutions of linear systems by iterative methods: Jacobi method, Gauss- Siedel method.	
Unit III	Interpolation and curve fitting: Errors in Polynomial interpolation, Finite differences, Differences of a polynomial, Newton's forward and backward interpolation, Central differences, Gauss, Stirling, Bessel's and Everett's Formulae, Practical interpolation and interpolation with unevenly spaced points, Lagrange's Interpolation formula, Divided difference and Newton's General interpolation formula, Least square curve fitting procedure.	10-15
Unit IV	Numerical differentiation and integration: Numerical differentiation, cubic Spline method, Maximum and minimum values of tabulated function, Newton-Cotes Integration formula, Numerical integration by Trapezoidal rule, Simpson'1/3, Simpson's 3/8, Weddle's rule and Romberg Integration, Numerical solution of ODE by Picard's Euler's Modified Euler's and Runge-Kutta methods.	12-15

S. S. Sastry: Introductory Methods Numerical Analysis, Prentice- Hall of India. C.F. Gerald and P. O. Wheatley: Applied Numerical Analysis, Addison- Wesley, 1998.Further Readings:

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths15A)- Operations Research

No. of Hours: 50-60

Course Title	Credits	Credit distribu	Credit distribution of the Course			Pre-requisite
		Lecture	Tutorial	Practical/Practice	criteria	of the course (if any)
DSE Maths15A: Operations Research	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3
Master of Scie	(N/L 41					

Master of Scie	ence (Mathem	atics)			
Programme:	Master of Sc	ience (Mathematics)	Year:V	Semester: X Paper: DSE Maths15A	
Subject: Math	ematics				
Course: DSE Maths15A Course Title: Operations Research			s Research		
Course Outco of optimization		rse will enable students to	understand various	methods for the solution	
Credits: 4				Discipline Specific Elective	
Max. Marks: As	Max. Marks: As per Univ. rules				
Unit	Content	Number of Hours			
Unit I	characteristic Formulation General LPP Solutions and and Two pha Duality in LF	R and LPP: Development s, scope, objectives and li of LPP, Graphical Method, Canonical and Standard and I Theory of Simplex method, Degen PP, Duality and simplex method, Revised simplex method, Revised simplex method.			

Unit II	Transportation Models: Lp Formulation of TP, Transportation Table, Finding initial basic feasible solution, Test of optimality, Degeneracy, MODI method, Stepping Stone method,	10-15
Unit III	Assignment Models: Solutions of Assignment problems, Hungerian method, Duality in assignment problem.	10-15
Unit IV	Sensitivity Analysis: Changes in Objective Function Coefficient, Changes in constants, Changes in coefficients of decision variables in constraints, Structural changes.	12-15

H. A. Taha: Operations Research, An Introduction, Pearson.

Kanti Swarup, P K Gupta, Manmohan: Operations Research, Sultan Chand & Sons, New Delhi.

S.S. Rao: Optimization Theory and Applications Wiley Eastern.

Further Readings:

F. S. Hiller and G. J. Leiberman: Introduction to Operation Research (6th Edition), McGraw-Hill International Edition, 1995.

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths15B)- Relativity

Practical/Practice

No. of Hours: 50-60

Pre-requisite

of the course (if any)

Eligibility

criteria

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Tutorial

Credit distribution of the Course

Course Title

Credits

Lecture

DSE Maths15B: Relativity	4	3	2		0		Passed diploma in Science with Mathematics	Completed DSE Maths3
Master of Scie	ence (Math	ematics)						
Programme:	Master of Science (Mathematics) Year: V					Semester: X Paper: DSE		
Subject: Mathe	ematics							
Course: DSE	Maths15B	Cou	rse Title:	Relativity	y			
Course Outcome that students car			_	-			ical way.	
Credits: 4							Discipline Specific Elective	
Max. Marks: As	per Univ. rul	les					Min. Passing Marks: As per Univ. rules	
Unit	Content					Number of Hours		
Unit I	Special Relativity: Inertial Frames of reference, Michelson-Morley experiment, Doppler effect, Stellar aberration, Simultaneity, Postulates of special relativity, Lorentz transformation, Length contraction, Time dilation, Clock paradox, Addition of velocities and accelerations, Four-dimensional space time, Light cone, Mass variation, Velocity four vector, Momentum and force, Mass-Energy relationship.						10-15	
Unit II	nd its algo ed curvat	desics, Geodesic coordinates, algebraic properties, Bianchi's rvature tensor, Conditions for a			12-15			

flat space time, Displacement of space –time, Killing

	equations, Groups of motion, Space –time of constant curvature.	
Unit III	Principal of covariance, Non-inertial frames of reference, Principal of equivalence, Weak field approximation of geodesic equations, Law of gravitation in empty space- time, Canonical coordinates, Schwarzschild solutions.	10-15
Unit IV	Experimental tests of general relativity, Schwarzschild metric in isotropic coordinates, Brikhoff's theorem, Law of gravitation in non-empty space time.	10-15

D.F. Lawden: An Introduction to tensor calculus and relativity,

J.V. Narlikar: General relativity and cosmology. R.H. Good: Basic concept of relativity, 1978.

Further Readings:

A.S. Eddington: Mathematical theory of relativity, 1981. Digital Platform: NPTEL/SWAYAM/MOOCs.

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths16A)- Special Functions

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility criteria	Pre-requisite
		Lecture	Tutorial	Practical/Practice	r criteria	of the course (if any)
DSE Maths16A: Special Functions	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3

Master of Sci	ience (Mathem	atics)		
Programme :	Master of Sca	ience (Mathematics) Year: V		Semester: X Paper: DSE Maths16A
Subject: Matl	hematics			. <u> </u>
Course: DSE	Maths16A	Course Title: Special Fu	inctions	
	omes: This coun	rse will extend the knowle	edge of functions to the	ne students by adding the
Credits: 4				Discipline Specific Elective
Max. Marks: A	s per Univ. rules			Min. Passing Marks: As per Univ. rules
Unit	Content			Number of Hours
Unit I	Preliminaries Gauss multip differential ed	10-15		
Unit II Integral representation of hypergeometric function, Evaluation of hypergeometric function, the confluent hypergeometric differential equation, Confluent hypergeometric function.				12-15
Unit III Bessel's equation, solution of Bessel's equation, Bessel's functions Jn(x), Recurrence Formulae, Equations reducible to Bessel's equation, orthogonality of Bessel's Functions, A generating function for Jn(x), Basic properties.			12-15	

Unit IV	Legendre's equation, Legendre's polynomial Pn(x), Legendre's function of the second kind Qn(x), General solution of Legendre's equation, Rodrigue's formula,	12-15
	Legendre polynomials, A generating function of	
	Legendre's polynomial, Orthogonality of Legendre	

E.D. Rainville: Special functions.

Nirvikar Saran: Special Functions.

W.W. Bell: Special Function for Scientists and Engineers, Dever publications, 2002,
U.P. Singh: Special Function & Their Application, WISDOM PRESS, 2012.

Further Readings:

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths16B)- Riemannian Geometry

Practical/Practice

No. of Hours: 50-60

(if any)

Pre-requisite

of the course

Eligibility

criteria

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Tutorial

Credit distribution of the Course

Course Title

Credits

Lecture

DSE Maths16B: Riemannian Geometry	4	3	2	0		Passed diploma in Science with Mathematics	Completed DSE Maths3
Master of Scie	ence (Math	ematics)					
Programme: Master of Science (Mathematics) Year: V						Semester: X Paper: DSE Maths16B	
Subject: Math	ematics					-	
Course: DSE	Maths16B	Course	Title: Rie	mannian C	Seometry		
	t applicable	e. It will help			-	where our Eucliding of other disc	
Max. Marks: As per Univ. rules				Min. Passing Univ. rules	Min. Passing Marks: As per Univ. rules		
Unit	Content			Number of	Hours		
Unit I	nit I N-dimensional real vector space and its dual space, multilinear functions on vector spaces, tensor product, contravariant and covariant vectors, second order tensors, tensors of type (r,s). Algebraic Operations on tensors, Symmetric and skew symmetric properties, inner product of vectors, Euclidean vector space.						
Unit II	Differentiable manifold, Lie-bracket, Tangent space, 12-15						

Connections, Covariant derivatives, Curvature tensor, Parallelism, Lie derivative, Exterior derivative, Cartan's

structural equations.

Unit III	Riemannian geometry: Riemannian metric, Christoffel symbols, Curvature tensor with respect to Christoffel symbols, Differential operators, Geodesics, Geodesic coordinates, Riemannian curvature, Conformal curvature tensor, Frenet's formulae.	13-15
Unit IV	Sub-manifolds and Hypersurfaces: Normals, Gauss's formulae, Weingarten equations, Coordinate viewpoint, Lines of curvature, Generalized Gauss and Mainardi-Codazzi equations.	12-15

- R.S. Mishra: A Course in tensors with applications to Riemannian Geometry, Pothishala Pvt. Ltd., Allahabad, 1965.
- R. L. Bishop and S. I. Goldberg: Tensor Analysis on Manifolds, Dover Publications, New York.
- S. S. Chern: Differentiable Manifolds, University of Chicago, Chicago.

Further Readings:

K. Yano: The theory of Lie derivatives and its applications, North-Holland Publishing Company, Amsterdam, 1957.

Matthew S. Smith: Principal and Application of Tensor Analysis, W. Sons (Indianapolis) 1963. H.S. Shukla, Prasad & Dhruwa Narain Dubey: Differential Geometry of Manifolds, Vandana Prakashan, Mohanlalpur, Gorakhpur.

Master of Science (Mathematics)

DISCIPLINE SPECIFIC ELECTIVE (DSE Maths16C)- Introduction to programming using MATLAB

No. of Hours: 50-60

Course Title	Credits	Credit distribution of the Course			Eligibility	Pre-requisite
		Lecture	Tutorial	Practical/Practice	rcriteria	of the course (if any)
DSE Maths16C: Introduction to programming using MATLAB	4	3	2	0	Passed diploma in Science with Mathematics	Completed DSE Maths3

Master of Scie	ence (Mathema	ntics)		
Programme:	Master of Sci	ence (Mathematics)	Year: V	Semester: X Paper: DSE Maths16C
Subject: Math	ematics			· •
Course: DSE	Maths16C	Course Title: Introduction	on to programming	g using MATLAB
		se is useful to do mathem derstanding of mathemati	-	s using computer. It will
Credits: 4		J	•	Discipline Specific Elective
Max. Marks: As	per Univ. rules			Min. Passing Marks: As per Univ. rules
Unit	Content			Number of Hours
Unit I MATLAB Basics: Introduction to MATLAB, Input and Output, Arithmetic, Algebra; Symbolic Expressions, Variables and Assignments, Solving Equations, Vectors and Matrices, Functions: Built-in Functions, User-Defined Functions.				12-15 d
Unit II	Data Classes: String Manipulation, Symbolic and Floating Point Numbers, Functions and Expressions, Complex Arithmetic, Matrices, Solving Linear Systems, Calculating			

	Eigenvalues and Eigenvectors, Doing Calculus with MATLAB (Differentiation, Integration, Limits, Sums and Products, Taylor Series etc)	
Unit III	MATLAB Graphics: Two-Dimensional Plots, Parametric Plots, Contour Plots and Implicit Plots, Field Plots, Three-Dimensional Plots, Curves in Three-Dimensional Space, Surfaces in Three-Dimensional Space, Special Effects, Animations	13-15
Unit IV	MATLAB Programming: Branching with if, Logical Expressions, Branching with switch, Loops, User defined functions, M-Files	12-15

Note: Practical assignments using statistical and numerical techniques.

Books Recommended:

Brian R. Hunt, Ronald L. Lipsman, Jonathan M. Rosenberg: A Guide to MATLAB for Beginners and Experienced Users, Cambridge University Press, 2001

Stormy Attaway: MAT LAB A Practical Introduction to Programming and Problem Solving,

Elsevier, 2017

Pattern of Examination Theory Papers

1. Theory

Each theory paper shall consist of two sections A and B.

Section A (Short answers type with reasoning): 45 marks, eight questions of nine marks each, any five have to be attempted.

Section B (Long answers type): 30 marks, two questions of fifteen marks each, and both questions are compulsory with internal choice.

2. Internal assessment

For each theory paper internal assessment shall be conducted periodically (in the form of class tests and/or assignments/ group discussion/ oral presentation/ overall performance) during the semester period. Total marks allotted to internal assessment shall be 25. The evaluated answer sheets/assignments have to be retained by the Professor In-Charge for the period of six months and can be shown to the students if students want to see the evaluated answer sheets. The marks obtained by the students shall be submitted to the Head of concerned department/ the Principal of the College for uploading onto the University examination portal.