## **National Education Policy- 2020**

## Sri Dev Suman Uttarakhand University, Badshahithaul, Tehri Garhwal



Common Minimum Syllabus for State Universities and Colleges of Uttarakhand

# Subject: Biotechnology PROPOSED STRUCTURE OF UG BIOTECHNOLOGY SYLLABUS

## **Proposed By:**

Department of Zoology
Pt. L.M.S. Campus Rishikesh, Sri Dev Suman
Uttarakhand University
BoS in Zoology (Biotechnology) Held on 11 July 2023

## Board of Studies (BoS) Member Department of Zoology Pt. Lalit Mohan Sharma Campus, Rishikesh Sri Dev Suman Uttarakhand University

| S. No. | Name               | <b>Designation &amp; Address</b> | Sign. |
|--------|--------------------|----------------------------------|-------|
| 1.     | Prof. G.K. Dhingra | Dean, Faculty of Sciences        |       |

| S. No. | Name                 | Designation      | Sign. |
|--------|----------------------|------------------|-------|
| 1.     | Prof. D. M. Tripathi | Professor & Head |       |
| 2.     | Prof. Surman Arya    | Professor        |       |
| 3.     | Prof. Ahmad Pervez   | Professor        |       |
| 4.     | Prof. Smita Badola   | Professor        |       |

## **Director from Research Institute**

| S. No. | Name              | <b>Designation &amp; Address</b> | Sign. |
|--------|-------------------|----------------------------------|-------|
| 1.     | Prof. Anita Rawat | Director, USERC, Dehradun        |       |
|        |                   |                                  |       |

## **Subject Experts**

| S.  | Name               | <b>Designation &amp; Address</b>     | Sign. |
|-----|--------------------|--------------------------------------|-------|
| No. |                    |                                      |       |
| 1.  | Dr. K. P. Singh    | Head &Assistant Professor, Dept. of  |       |
|     |                    | Biotechnology, D.B.S.(P.G.) College, |       |
|     |                    | Dehradun                             |       |
| 2.  | Dr. Narotam Sharma | Scientist & Head, DNA Labs, A center |       |
|     |                    | for Applied sciences, Dehradun       |       |

## **Invited Principal from Govt. Post Graduates College**

| S.  | Name               | <b>Designation &amp; Address</b>                    | Sign. |
|-----|--------------------|-----------------------------------------------------|-------|
| No. |                    |                                                     |       |
| 1.  | Prof. Pushpa Negi  | Principal, Govt. P.G. College, Tehri                |       |
| 2.  | Prof. Pankaj Pant  | Principal, Govt. P.G. College,<br>Nagnath Pokhari   |       |
| 3.  | Prof. Kuldeep Negi | Principal, Govt. P.G. College,<br>Khanpur, Haridwar |       |

### Theory and Practical Examination Pattern

Theory (External) each theory paper carrying maximum marks 75 and shell consists two sections A and B. Examination duration shall be 03 hours.

a) Section A: (short answers type, 200 words).

Section A will consist of 08 questions, each of 6 marks in which 5 have to be answered.

Total:  $6 \times 5 = 30$ 

b) Section B: (long answers type, 500 words).

Section B will consist of 05 questions, each of 15 marks in which 3 have to be answered.

Total:  $3 \times 15 = 45$ 

For each theory paper internal assessment shall be conducted periodically (in the form of class tests and/or assignments/ group discussion/ oral presentation/ overall performance) during the semester period. Total marks allotted to internal assessment shall be 25(assignment 10 marks, written test / viva 10 marks and regularity 5, marks). The evaluated answer sheets/ assignment have to be retained by the Professor In-charge for the period of six months and can be shown to the students if students want to see the evaluated answer sheets. The marks obtained by the students shall be submitted to the head of the concerned department/ the Principal of the college for uploading on to the University examination portal.

**Practical:** The laboratory work of the students has to be evaluated periodically.

The internal assessment (in the form of lab test, lab record, internal evaluation, assignment/ home assignment and attendance) of total 10 marks per each semester shall be conducted during the semester.

All kinds of exercises have to be conducted during a semester. Maximum 5 marks of attendance can be given to the students.

In each semester practical examination of 75 marks has to be conducted by two examiners (external and internal) having duration of 4 hours. The total number of the students to be examined per batch should not be more than sixty. Marks obtained in the practical examination have to be submitted to head of the concerned department/ the Principal of the college. The Head of the department/ the Principal of the college will make necessary arrangement for uploading the marks on to the University examination portal. The hard copy of the award list from portal has to be submitted to the Controller of Examination, Sri Dev Suman Uttarakhand University, Badshahithaul, New Tehri.

The breakup of marks for practical examination for each semester would be as follows:

Practical exam: 50 Marks (Exercises)

Lab Record and Collection: 15 Marks Viva voce: 10 Marks Sessional (Internal): 25 Marks

Total: 100 Marks (each semester)

## National Education Policy-2020 Common Minimum Syllabus for all Uttarakhand State Universities/Colleges

## Subject: Biotechnology Semester-wise Titles of the Papers in B.Sc. Biotechnology

| Year | Sem. | Course          | Paper Title                                                      | Theory/Practical                 | Credits    |
|------|------|-----------------|------------------------------------------------------------------|----------------------------------|------------|
|      |      | Code            |                                                                  |                                  |            |
|      | _    |                 | rtificate in Basic Biotechnology                                 | Ti                               |            |
| 1    | I    | UBT01-<br>(T/P) | Chemical Science I                                               | Theory +<br>Practical            | 4+2        |
|      |      | UBT02-(T)       | Biology of Plants                                                | Theory                           | 6          |
|      |      | UBT03-(T)       | Biology of Animals                                               | Theory                           | 6          |
|      |      | -               | Vocational                                                       |                                  | 3          |
|      |      |                 | Co-curricular                                                    |                                  | Qualifying |
|      | II   | UBT04-<br>(T/P) | Elementary Molecular<br>Biology                                  | Theory +<br>Practical            | 4+2        |
|      |      | UBT05-T         | Basics of Genetics                                               | Theory                           | 6          |
|      |      | UBT06-<br>(T/P) | Introductory Microbiology                                        | Theory +<br>Practical            | 4+2        |
|      |      | -               | Elective (Either in I <sup>st</sup> or 2 <sup>nd</sup> semester) |                                  | 4/5/6      |
|      |      | -               | Vocational                                                       |                                  | 3          |
|      |      |                 | Co-curricular                                                    |                                  | Qualifying |
|      |      |                 |                                                                  | Total                            | 46/47/48   |
|      |      |                 | Diploma in Biotechnology                                         | ·                                | •          |
| 2    | III  | UBT07-T         | Basic Cell Biology                                               | Theory                           | 6          |
|      |      | UBT08-<br>(T/P) | Chemical Science II                                              | Theory +<br>Practical            | 4+2        |
|      |      | UBT09-<br>(T/P) | Fundamental Biochemistry                                         | Theory <sub>+</sub><br>Practical | 4+2        |
|      |      | -               | Vocational                                                       |                                  | 3          |
|      |      |                 | Co-Curricular                                                    |                                  | Qualifying |
|      | IV   | UBT10-<br>(T/P) | Basic Genetic Engineering                                        | Theory +<br>Practical            | 4+2        |
|      |      | UBT11-(T)       | Elementary Industrial<br>Microbiology                            | Theory                           | 6          |
|      |      | UBT12-T         | Food Biotechnology                                               | Theory                           | 6          |
|      |      | -               | Elective (Either in 3 <sup>rd</sup> or 4 <sup>th</sup> semester) |                                  | 4/5/6      |
|      |      | -               | Vocational                                                       |                                  | 3          |
|      |      |                 | Co-Curricular                                                    |                                  | Qualifying |

|          |        |                 |               |                                  | Total              | 46/47/48   |
|----------|--------|-----------------|---------------|----------------------------------|--------------------|------------|
|          |        | Degree          | in Bachelor o | of Science (Biotechnolo          | gy)                |            |
|          |        |                 |               |                                  |                    |            |
| 3        | V      | UBT13-<br>(T/P) | Basics        | s of Immunology                  | Theory + Practical | 4+2        |
|          |        | UBT14-T         |               | ctory Animal echnology           | Theory             | 4          |
|          |        | UBT15-T         | Envi<br>Biote | Environmental<br>Biotechnology   |                    | 4          |
|          |        | UBT16-<br>(T)   |               | lar Cancer Biology               | Theory             | 4          |
|          |        |                 | C             | o-Curricular                     |                    | Qualifying |
|          |        |                 |               | Industrial rvey/Research Project | Theory + Practical | 4          |
|          | VI     | UBT17-<br>(T/P) |               | Introductory Plant Biotechnology |                    | 4+2        |
|          |        | UBT18-<br>(T/P) |               | Bio-Analytical Techniques        |                    | 4+2        |
|          |        | UBT19-T         | Mici          | Microbial Genetics               |                    | 4          |
|          |        | UBT20-T         | Medic         | al Biotechnology                 | Theory             | 4          |
|          |        |                 | C             | o-Curricular                     |                    | Qualifying |
|          |        |                 | Training/Su   | Industrial rvey/Research Project |                    | 4          |
|          |        |                 |               |                                  | Total              | 46         |
|          |        |                 | Elective p    | papers offered                   |                    | ·          |
| Course c | ode    | Paper title     |               | Theory/Practical                 | Credits            |            |
| UBT05-T  |        | Basics of C     | Genetics      | Theory                           | 6                  |            |
|          | 3T07-T |                 | ll Biology    | Theory                           | 6                  |            |
| UE       | BT12-T | Food Bio        | technology    | Theory                           | 6                  |            |
| U.       | BT16-  |                 | ar Cancer     | Theory                           | 4                  |            |
|          | (T)    | Bio             | logy          |                                  |                    |            |

### **Subject Prerequisite**

The candidate should have passed (10+2) examination in science stream with PCB (Physics, Chemistry, Biology and/or Biotechnology) or PCM (Physics, Chemistry and Maths) or any other science subject.

#### **PROGRAM OBJECTIVES:**

- 1. Students after completion of the program will be eligible for pursuing higher courses in biotechnology and related fields.
- 2. Graduates will get competency in the subject and would contribute to the growth of the country in different disciplines related to biotechnology
- 3. Students will pursue career paths in teaching or research at suitable levels.

|                | PROGRAM SPECIFIC OUTCOMES (PSOs)                                                                                                                                                                                |
|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | CERTIFICATE IN BIOTECHNOLOGY                                                                                                                                                                                    |
| First<br>Year  | This course introduces the knowledge of genetics, molecular biology and microbiology; along with achieving the basic foundation in Mathematics, Biology and Chemistry.                                          |
|                | <b>PSO1.</b> After completion of this certificate course, students will be able to demonstrate and apply their knowledge of genetics, molecular biology and microbiology related to the field of biotechnology. |
|                | <b>PSO2:</b> Understand the basic concepts of genetics and molecular biology such as inheritance pattern, DNA replication, transcription and translation.                                                       |
|                | <b>PSO3:</b> Understand how genetic information is transmitted in organism.                                                                                                                                     |
|                | <b>PSO4.</b> Acquire knowledge about the application of various types of microscopes, staining techniques, culture techniques, sterilization, preservation etc.                                                 |
|                | <b>PSO5:</b> Perform experiments of DNA isolation, agarose gel electrophoresis, spectroscopy, PCR etc.                                                                                                          |
|                | <b>PSO6:</b> apply for job at technical positions in different research laboratories, diagnostic centers and industries.                                                                                        |
| Second<br>Year | DIPLOMA IN BIOTECHNOLOGY                                                                                                                                                                                        |
|                | After completion of diploma course, students will be able to-<br><b>PSO1:</b> Learn the chemistry, structure and functions of major bio-molecules and metabolism of carbohydrate, protein etc.                  |
|                | <b>PSO2</b> : Understand the significance of Biochemistry and basics of enzymes.                                                                                                                                |
|                | <b>PSO3:</b> Familiarize with basic laboratory instruments and understand the principle of measurements using those instruments with experiments in Biochemistry.                                               |
|                | <b>PSO4:</b> Understand different biochemical tools and techniques such as chromatography, electrophoresis etc.                                                                                                 |
|                | <b>PSO 5.</b> Know the chemical structure of nucleotides including their components, describe primary, secondary structure of DNA and RNA.                                                                      |
|                |                                                                                                                                                                                                                 |

- **PSO 6:** Perform different experiments based on the techniques such as chromatography, electrophoresis, centrifugation etc.
- **PSO 7:** Would be able to understand Morphology and cell structure; Various subcellular bodies, their interaction and trafficking etc.
- **PSO 8:** Understand the foundations of modern biotechnology and explain the principles that form the basis for recombinant technology & understand and perform various recent molecular and recombinant DNA technology techniques; perform experiments of DNA isolation, gene cloning, transformation etc.

| Third<br>Year | DEGREE IN BACHELOR OF SCIENCE (Biotechnology)                                                                                                                                                                                                                                            |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | After completing the three years degree course in Biotechnology, the students will be able to: <b>PSO1:</b> Understand the principles, practices and applications of plant biotechnology, transgenic plant generation, plant tissue culture, plant genomics, and genetic transformation. |
|               | <b>PSO2:</b> Perform and analyze the results of experiments using basic laboratory techniques of immunology, animal and plant biotechnology, Bio-analytical techniques, medical biotechnology, Microbial genetics and Environmental biotechnology.                                       |
|               | <b>PSO3</b> : Learn different gene delivery methods to deliver foreign gene in plants and animals.                                                                                                                                                                                       |
|               | <b>PSO4:</b> Familiarize with the principles, practices and application of animal biotechnology in Transgenesis, Tissue Engineering, and biopharmaceuticals.                                                                                                                             |
|               | <b>PSO5:</b> Develop an ability to properly understand the technical aspects of existing technologies that help in addressing the various challenges faced by humankind.                                                                                                                 |
|               | <b>PSO6</b> . learn fundamentals of Environmental Biotechnology and understand the importance of clean (pollution free) environment.                                                                                                                                                     |
|               | <b>PSO7:</b> Understand biotechnological solutions to address environmental issues including pollution, mineral resource winning, renewable energy and water recycling.                                                                                                                  |
|               | <b>PSO8:</b> Understand and also able to perform different immunological techniques like agglutination reaction, ABO typing and ELISA.                                                                                                                                                   |
|               | <b>PSO9:</b> Demonstrate principle and application of Chromatography (Column chromatography, Ion- exchange chromatography, Gel-permeation (molecular sieve, chromatography, Affinity chromatography, Paper chromatography, Thin-layer chromatography and HPLC <i>etc</i> )               |
|               | <b>PSO10:</b> Demonstrate knowledge for in-depth analytical and critical thinking to identify, formulate and solve the issues related to Biotechnology research, Biotechnology Industry, Pharma industry, Medical or hospital related organizations, and Academia.                       |
|               | <b>PSO 11:</b> Exhibit ability to do research independently as well as in collaboration in the area of Biotechnology Industry, Pharma industry, Medical or hospital related organizations, and Academia.                                                                                 |

|      | Subject: Biotechnology |                       |         |                       |                                                                                                                                                                                                                                                                                                                                                                               |                     |                                            |  |  |
|------|------------------------|-----------------------|---------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------------------------------------|--|--|
| Year | Semester               | Theory Paper          | Units   | Practical Paper       | Units                                                                                                                                                                                                                                                                                                                                                                         | Research<br>Project | Total<br>Credits of<br>the Year<br>subject |  |  |
| 1    | I                      | CHEMICAL<br>SCIENCE I | 4 Units | CHEMICAL<br>SCIENCE I | Volumetric Analysis: Acid-Base, Oxd-Red, Iodometric Titration, Potassium dichromate.     Determination of surface tension/viscosity     Calculation of parachor     Separation of the organic binary mixture and identification of the compounds.                                                                                                                             | NIL                 | 4+2=6                                      |  |  |
|      |                        | BIOLOGY OF<br>PLANTS  | 5 Units | BIOLOGY OF<br>PLANTS  | <ol> <li>Introduction to plant kingdom.</li> <li>Mechanism of photosynthesis, photophosphorylation and respiration.</li> <li>Mechanism and significance of respiration.</li> <li>Introduction to Dicot and Monocot root and stem, structure and function of different cells (Angiosperms and Gymnosperms)</li> <li>Plant growth hormonesintroduction and function.</li> </ol> | NIL                 | 6                                          |  |  |
|      |                        | BIOLOGY OF<br>ANIMALS | 5 Units | BIOLOGY OF<br>ANIMALS | <ol> <li>Introduction to animal kingdom classification.</li> <li>Organic evolution.</li> <li>Population genetics.</li> <li>Introduction to various Animal system.</li> <li>Introduction to commercial implementation of different Animal culture.</li> </ol>                                                                                                                  | NIL                 | 6                                          |  |  |

| II | ELEMENTARY<br>MOLECULAR<br>BIOLOGY | 5 Units | ELEMENTARY<br>MOLECULAR<br>BIOLOGY | Estimation of DNA content in the given sample by diphenylamine method     Estimation of RNA content by the Orcinol method     Isolation of DNA from bacterial or plant or animal cell     Spectrophotometric Quantitation of DNA.     DNA Hyperchromacity. | NIL | 4+2=6 |
|----|------------------------------------|---------|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
|    | BASICS OF<br>GENETICS              | 5 Units | BASICS OF<br>GENETICS              | Introduction of genetics,<br>genotype, phenotype and<br>other genetics terminology.                                                                                                                                                                        | NIL | 6     |
|    |                                    |         |                                    | Mendel law and their inheritance.                                                                                                                                                                                                                          |     |       |
|    |                                    |         |                                    | Chromosome- structural organization and disorder.                                                                                                                                                                                                          |     |       |
|    |                                    |         |                                    | 4. Chromosomal aberration.                                                                                                                                                                                                                                 |     |       |
|    |                                    |         |                                    | 5. Introduction to mutations and mutagens.                                                                                                                                                                                                                 |     |       |
|    |                                    |         |                                    | 6. Introduction to microbial genetic recombination.                                                                                                                                                                                                        |     |       |
|    |                                    |         |                                    | 7. Introduction to classical genetic experiments.                                                                                                                                                                                                          |     |       |

| INTRODUCTORY<br>MICROBIOLOGY | 5 Units | INTRODUCTORY<br>MICROBIOLOGY | 1. Preparation of nutrient agar slants, plates and nutrient broth and their sterilization 2. Inoculation of agar slants, agar plate and nutrient broth 3. Culture of micro-organism using various techniques 4. Simple and differential staining procedures, endospore staining, flagellar staining, cell wall staining, Capsular staining, negative staining 5. Bacterial colony counting 6. Microscopic Observation of different vegetative, capsular and spore forms of bacteria and fungus under | NIL | 4+2=6 |
|------------------------------|---------|------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
|                              |         |                              | spore forms of bacteria and fungus                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |       |

| 2 | III | BASIC CELL<br>BIOLOGY  CHEMICAL<br>SCIENCE II | 4 Units 5 Units | BASIC CELL<br>BIOLOGY  CHEMICAL<br>SCIENCE II | 1. Cell as a unit of living system. 2. Structure and functions of various cell organelles. 3. Structure of nucleus and chromosomes: Giant chromosomes (lampbrush & polytene). 4. Cytoskeletal structures. 5. Cell division. 6. Cell senescence, cell death and apoptosis.  1. Preparation of organic compound, Nitration, Bromination, Acetylation etc. | NIL | 4+2=6 |
|---|-----|-----------------------------------------------|-----------------|-----------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
|   |     |                                               |                 |                                               | <ol> <li>Preparation of Inorganic compound.</li> <li>Paper, Thin layer and column chromatography of sugars, Amino acid, phenols etc.</li> <li>Qualitative analysis of inorganic mixture containing not more than six ionic species. (excluding insoluble substances)</li> </ol>                                                                         |     |       |
|   |     | FUNDAMENTAL<br>BIOCHEMISTRY                   | 6 Units         | FUNDAMENTAL<br>BIOCHEMISTRY                   | Estimation of Carbohydrates     Estimation of Proteins     Separation of Amino acids by Paper Chromatography     Thin layer Chromatography     Gel Electrophoresis     Assay of enzyme activity and Enzyme kinetics     Saponification of Fats                                                                                                          | NIL | 4+2=6 |

| IV BASIC GENETIC 5 Units ENGINEERING | BASIC GENETIC<br>ENGINEERING | 1. Isolation of Plasmid DNA 2. Restriction digestion with EcoRI' Hind III or any other restriction enzyme available 3. Agarose gel electrophoresis of Restricted and Unrestricted DNA fragments. |  | 4+2=6 |
|--------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------|
|--------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|-------|

|   |   | Elementary<br>Industrial<br>microbiology | 8 units | Elementary<br>Industrial<br>microbiology | <ol> <li>Perspectives and introduction to industrial microbiology.</li> <li>Basic microbial taxonomy.</li> <li>Harnessing of introduction to fermentation technology.</li> <li>Downstream processing.</li> <li>Microbes in industries and agriculture.</li> </ol> | Nil | 6     |
|---|---|------------------------------------------|---------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
|   |   | Food Biotechnology                       | 8 Units | Food Biotechnology                       | Introduction to Food  technology                                                                                                                                                                                                                                  | NIL | 6     |
| 3 | V | BASICS OF<br>IMMUNOLOGY                  | 5 Units | BASICS OF<br>IMMUNOLOGY                  | Demonstration of immunization techniques and bleeding of experimental animals.     Separation of serum.     Antibody and Antigen interaction— Agglutination, Precipitation, Ochterlony double diffusion     ELISA                                                 | NIL | 4+2=6 |

|  | INTRODUCTORY<br>ANIMAL<br>BIOTECHNOLOGY | 5 Units | INTRODUCTORY<br>ANIMAL<br>BIOTECHNOLOGY | <ol> <li>Animal cell culture.</li> <li>Application of Animal cell culture.</li> <li>Immunodiagnostics and vaccine technology.</li> <li>Embryo biotechnology and animal cloning</li> <li>Fermentation technology and animal transgenesis.</li> </ol> | NIL | 4 |
|--|-----------------------------------------|---------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|
|  | ENVIRONMENTAL<br>BIOTECHNOLOGY          | 5 Units | ENVIRONMENTAL<br>BIOTECHNOLOGY          | <ol> <li>Basic concept of ecosystem.</li> <li>Waste water management.</li> <li>Conventional fuels</li> <li>Bio absorption and bioremediation.</li> <li>Concept of biosafety.</li> </ol>                                                             | NIL | 4 |

|    | MOLECULAR<br>CANCER<br>BIOLOGY         | 5 Units | MOLECULAR<br>CANCER<br>BIOLOGY              | <ol> <li>introduction, growth characteristics of cancers cells.</li> <li>Cancer biology biochemistry.</li> <li>Radiation and chemical carcinogenesis.</li> <li>Cell cycle regulation.</li> <li>Cancer diagnosis and treatment.</li> </ol>                      | NIL | 4     |
|----|----------------------------------------|---------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|
| VI | INTRODUCTORY<br>PLANT<br>BIOTECHNOLOGY | 5 Units | INTRODUCTO<br>RY PLANT<br>BIOTECHNOLO<br>GY | 1. Plant tissue culture, Media preparation 2. Ex plant selection and sterilization 3. Callus culture 4. Callus splitting and Regeneration 5. Rooting and Shooting of callus using Auxins and Cytokinins 6. Hardening of the tissue culture generated plantlets | NIL | 4+2=6 |
|    | BIO-ANALYTICAL<br>TECHNIQUES           | 5 Units | BIO -<br>ANALYTICAL<br>TECHNIQUES           | Gravimetric estimation of barium, zinc, iron, copper, sulphate and chromium     Organic Mixture: Separation of two component organic mixtures (water soluble), systemic analysis of each component.                                                            | NIL | 4+2=6 |
|    | MICROBIAL<br>GENETICS                  | 6 Units | MICROBI<br>AL<br>GENETICS                   | <ol> <li>Prokaryotic genomes</li> <li>Mechanism of genetics exchange.</li> <li>Integrons and antibiotics.</li> <li>Molecular mechanism of gene regulation in prokaryotes.</li> <li>Bacteriophages.</li> <li>Bacteriophage genetics.</li> </ol>                 | NIL | 4     |

| MEDICAL<br>BIOTECHNOLOGY | 6 Units | MEDICAL<br>BIOTECHNOLOGY | <ol> <li>Gene therapy.</li> <li>Gene delivery methods.</li> <li>Vaccines and synthetic therapy.</li> <li>Xenotransplantation</li> <li>Cell adhesion- based therapy and drug delivery.</li> </ol> | NIL | 4 |
|--------------------------|---------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---|

| Year | Sem. | Course    | Paper Title                  | Theory/Practical   | Credits    |
|------|------|-----------|------------------------------|--------------------|------------|
|      |      | Code      |                              |                    |            |
|      |      | Cer       | tificate in Basic Biotech    | 0.                 |            |
| 1    | I    | UBT01-    | Chemical Science I           | Theory + Practical | 4+2        |
|      |      | (T/P)     |                              |                    |            |
|      |      | UBT02-(T) | Biology of Plants            | Theory             | 6          |
|      |      | UBT03-(T) | Biology of Animals           | Theory             | 6          |
|      |      | -         | Vocational                   |                    | 3          |
|      |      |           | Co-curricular                |                    | Qualifying |
|      | 2    | UBT04-    | Elementary Molecular         | Theory + Practical | 4+2        |
|      |      | (T/P)     | Biology                      |                    |            |
|      |      | UBT05-T   | Basics of Genetics           | Theory             | 6          |
|      |      | UBT06-    | Introductory                 | Theory + Practical | 4+2        |
|      |      | (T/P)     | Microbiology                 |                    |            |
|      |      | -         | Elective (Either in Ist      |                    | 4/5/6      |
|      |      |           | or 2 <sup>nd</sup> semester) |                    |            |
|      |      |           | Vocational                   |                    | 3          |
|      |      |           | Co-curricular                |                    | Qualifying |
|      |      |           |                              | Total              | 46/47/48   |

## Semester-I Paper-I (Theory+ practical) Course Title: CHEMICAL SCIENCE I

Course Objective: To understand the basic principles of atomic structure, nomenclature, reaction kinetics, electrochemistry, ionic strength and pH etc, for their application in biotechnology related disciplines.

| Cred  | its: 4+2                                                       | Compulsory                                                                                                                                                                                                                                                                                                |                          |
|-------|----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|       | x. Marks: 100+50 actical)                                      | Min. Passing Marks:                                                                                                                                                                                                                                                                                       |                          |
|       |                                                                | Total Number of Lectures = 60                                                                                                                                                                                                                                                                             |                          |
| Units |                                                                | Content (Theory)                                                                                                                                                                                                                                                                                          | Number<br>of<br>Lectures |
| 1     | electron pair i<br>and H <sub>2</sub> O, Mo<br>• Periodic prop | rure, chemical bonding, hybridization, valence shell repulsion (VSEPR) theory. To NH <sub>3</sub> , H <sub>3</sub> O <sup>+</sup> , SF <sub>4</sub> ,ClF <sub>3</sub> lecular orbital theory (MOT), perties: viz. ionization potential, electron affinity, wity etc. study of s, p and d- block elements. | 15                       |
|       |                                                                | compound: Werners theory and IUPAC of coordination compounds valence bond theory n of inner and outer orbit complexes.                                                                                                                                                                                    |                          |

| 2 | <ul> <li>Acids and bases: elementary ideas of Bronsted – Lowery and Lewis concept of acid and bases. SHAB (soft and hard acid and base), buffer solution, pH, pKa and pKb values,</li> <li>Solution: Henrys law, Roults law, osmotic pressure and its measurement, effect of solute on B.P. and F.P. of solution. Vapour pressure, surface tension, viscosity, parachor, Rheochor and their applications</li> </ul>                                                                                           | 15 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | <ul> <li>Chemical kinetics: 1<sup>st</sup> 2<sup>nd</sup> and 3<sup>rd</sup> order reactions, determination of order of reaction, molecularity and order of reaction, Energy of activation, Arhenus equation, half- life period, catalyst and composite reaction.</li> <li>Electrochemistry: Galvanic cells, EMF, type of electrodes, reference electrodes, electroanalytical methods viz; potentiometry, conductometry, polarography, weak and strong electrolyte, degree of hydrolysis of salts.</li> </ul> | 15 |
| 4 | <ul> <li>Ionic and Liquid crystals</li> <li>Nuclear chemistry: concepts of nuclides, isotopes, isobars, isotones, radioactivity, nuclear reaction,</li> <li>Colloidal solutions: properties of collides, Tyndel effect, flocculation, Hardy –Sultze rule.</li> </ul>                                                                                                                                                                                                                                          | 15 |

- Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5<sup>th</sup> edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. First Year", S. Chand Publishing, New Delhi, India, 2011, 3<sup>rd</sup> edition.
- Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1<sup>st</sup> edition.
- Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6<sup>th</sup> edition.
- Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- Bahl, A., Bahl, B.S. and Tuli, G.D., "Essential of Physical Chemistry", S. Chand Publishing, India, 2010.
- Bariyar, A., Singh, R.P. and Dwivedi, A., "Text Book for B. Sc. Chemistry I", Anu Books, 2019.

#### **Suggested online links:**

- https://ocw.mit.edu/courses/chemistry/5-111sc-principles-of-chemical-science-fall-2014/unit-ii-chemical-bonding-structure/lecture-14/
- https://onlinecourses.swayam2.ac.in/nce19\_sc15/preview
- http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&GakubuCD=3&GakkaCD=332100&KeiCD=21&KougiCD=202102333&Nendo=2021&lang=EN&vid=03
- https://www.openlearning.com/courses/introduction-to-physical-chemistry/?cl=1
- https://www.careers360.com/university/indian-institute-of-technology-bombay/chemistry-of-main-group-elements-certification-course
- https://onlinecourses.swayam2.ac.in/cec20 lb01/preview

- https://nptel.ac.in/courses/104/103/104103071/
- http://test.open.uci.edu/lectures/chem\_1c\_lec\_20\_general\_chemistry\_electrochemistry\_pt\_5.ht ml

## Semester-I Paper-I (Practical) Course Title: CHEMICAL SCIENCE I

|       | Total Number of Hrs = 60                                                                          |                  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------|------------------|--|--|--|--|--|
| Units | Content (Theory)                                                                                  | Number of<br>Hrs |  |  |  |  |  |
| 1     | Volumetric Analysis : Acid-Base, Oxidation-Reduction, Iodometric Titration, Potassium dichromate. | 15               |  |  |  |  |  |
| 2     | Determination of surface tension/ viscosity                                                       | 15               |  |  |  |  |  |
| 3     | Calculation of parachor                                                                           | 15               |  |  |  |  |  |
| 4     | Separation of the organic binary mixture and identification of the compounds.                     | 15               |  |  |  |  |  |

## Semester-I Paper-II (Theory) Course Title: Biology of Plants

**Course objective:** Students will learn basics of plant classification, anatomy, morphology and physiology etc. The background of plant science would enable the students to apply biotechnological tools in agricultural crops and other plants.

| Credits: 6  Max. Marks: 100 |                                                                                              | Compulsory                                                                                                                                 |           |
|-----------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|
|                             |                                                                                              | Min. Passing Marks:                                                                                                                        |           |
|                             |                                                                                              | Total Number of Lectures =90                                                                                                               |           |
| Units                       | Content (Theory)                                                                             |                                                                                                                                            | Number of |
|                             |                                                                                              |                                                                                                                                            | Lectures  |
| 1                           |                                                                                              | m. The classification up to the level of genus and ortant characters of each class with suitable                                           | 20        |
|                             |                                                                                              | f Photosynthesis, photophosphorylation. and significance of respiration.                                                                   |           |
| 2                           | water.                                                                                       | elations, absorption movement and transpiration of of minerals and nutrients.                                                              | 15        |
| 3                           | <ul><li>different cells</li><li>Inflorescence with example</li><li>Secondary group</li></ul> | owth of stem                                                                                                                               | 20        |
| 4                           | <ul><li>Plant growth l</li><li>Major auxin &amp;</li></ul>                                   | of seed, Seed germination and dormancy hormones- introduction and functions. & Cytokinin, their functions and application , Photoperiodism | 15        |
| 5                           | 1 -                                                                                          | y, Polyembryony f the medicinally and aromatically important                                                                               | 20        |

#### **Books Recommended:**

- Smith, A. M., Coupland, G., Dolan, L., Harberd, N., Jones, J., Martin, C., Amey, A. (2009). Plant Biology. Boca Raton, FL: CRC Press.
- Bowsher, C., Steer, M., & Tobin, A. (2008). Plant Biochemistry. London, England: Garland Science.
- Godwin, H. (2015). Plant biology: An outline of the principles underlying plant activity and structure. Cambridge, England: Cambridge University Press.
- Sharma, H. P. (2009). Plant embryology: Classical and experimental. Oxford, England: Alpha Science International.

#### **Suggested online links:**

- https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=1p0OY7YTBClr5D2KEqnvVg==
- <a href="https://onlinecourses.swayam2.ac.in/cec21\_bt03/preview">https://onlinecourses.swayam2.ac.in/cec21\_bt03/preview</a>
- https://onlinecourses.swayam2.ac.in/cec19 bt01/preview
- <a href="https://onlinecourses.nptel.ac.in/noc19">https://onlinecourses.nptel.ac.in/noc19</a> <a href="https://onlinecourses.nptel.ac.in/noc19">https://onlinecourse
- https://onlinecourses.swayam2.ac.in/cec19 bt09/preview

## Semester-I Paper-III (Theory) Course Title: BIOLOGY OF ANIMALS

**Course Objective**: This course will introduce students to Classification and nomenclature of animals, evolution, adaptation and animal physiology etc. This would help them in applying biotechnological principles to animal model systems.

| Cred  | lits: 6                                                                                                       | Compulsory                                                                                                                                                                   |           |
|-------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Ma    | ax. Marks: 100                                                                                                | Min. Passing Marks:                                                                                                                                                          |           |
|       |                                                                                                               | Total Number of Lectures = 90                                                                                                                                                |           |
| Units |                                                                                                               | Content (Theory)                                                                                                                                                             | Number of |
|       |                                                                                                               |                                                                                                                                                                              | Lectures  |
| 1     | <ul> <li>Linnaean hierarch</li> <li>Principles of nor<br/>nomenclature.</li> <li>Outline classific</li> </ul> | classification for the five kingdom approach, by. nenclature, International code of zoological cation of Non-chordates and chordates characters and examples of major living | 20        |
| 2     | <ul> <li>Organic evolution</li> <li>Theory of evolution</li> <li>Darwinism &amp; New evolution</li> </ul>     | Le Evidences.  Lation- Lamarckism & Neo- Lamarckism;  eo-Darwinism; Modern synthetic theory of  cs- Hardy-Weinberg law.                                                      | 15        |
| 3     | <ul><li>and lipids, role pigments.</li><li>Respiration:, Respiration dioxide; C</li></ul>                     | ion & absorption of carbohydrates, proteins of enzymes and hormones, Respiratory piratory pigments, Transport of oxygenand ontrol of breathing.                              | 20        |
|       | Heart beat & card                                                                                             |                                                                                                                                                                              |           |

| 4 | • <u>Nervous system</u> : CNS, PNS, Autonammic system, nerve impulse.                                                                                                                                                                                  | 20 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | <ul> <li><u>Excretion</u>: Composition of Urine &amp; its formation in mammals</li> <li><u>Endocrines</u>: A brief idea of structure and functions of Hypothalamus, Pituitary, Thyroid, Parathyroid, Adrenal, Pancreas, Testis &amp; ovary.</li> </ul> |    |
| 5 | <ul> <li>Aquatic adaptations of fish- Morphological, Anatomical and physiological. A brief idea of fish culture.</li> <li>Outline of Sericulture, Apiculture &amp; insects pest management.</li> </ul>                                                 | 15 |

- Shipley, A. E., & MacBride, E. W. (2014). *Zoology: An elementary text-book*. Cambridge, England: Cambridge University Press.
- Miller, S. A., Harley, J. P., & Molles, M. C. (2012). *Zoology* (9th ed.). Maidenhead, England: McGraw Hill Higher Education.
- Hill, R., Wyse, G. A., & Anderson, M. (2016). *Animal Physiology* (4th ed.). Sunderland, MA: Sinauer Associates.
- R. Jurd; Instant Notes Animal Biology; Bios Scientific Publishers

#### **Suggested online links:**

- https://nptel.ac.in/courses/102/104/102104058/
- https://www.digimat.in/nptel/courses/medical/anatomy/AN11.html
- https://nptel.ac.in/courses/102/104/102104042/
- https://ocw.mit.edu/courses/biology/7-016-introductory-biology-fall-2018
- https://www.digimat.in/nptel/courses/medical/anatomy/AN11.html
- https://onlinecourses.swayam2.ac.in/cec20 bt19/preview
- https://onlinecourses.nptel.ac.in/noc21 bt46/preview
- https://ocw.mit.edu/courses/brain-and-cognitive-sciences/9-04-sensory-systems-fall-2013

## Semester-II Paper-I (Theory + Practical)

Course Title: ELEMENTARY MOLECULAR BIOLOGY

**Course Objective**: Students will understand molecular logic of life; they will understand the organization and functions of DNA, RNA, and proteins. They would also learn the biochemical and molecular regulation of various biological processes

| Credits: 4+2  Max. Marks: 100+25 (Practical) |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Compulsory                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |
|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Min. Passing Marks:                                                                                                                                                                                                                                                                                                                                                                                                                                     |              |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Number of Lectures = 60                                                                                                                                                                                                                                                                                                                                                                                                                           |              |
| Units                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Content (Theory)                                                                                                                                                                                                                                                                                                                                                                                                                                        | Number<br>of |
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Lectures     |
| 1                                            | <ul> <li>Recapitulation as genetic ma &amp;Chase's exp</li> <li>DNA polymer</li> <li>Replication of (Messelsen &amp; directional repreplication, Delongation &amp;</li> </ul>                                                                                                                                                                                                                                                                               | apitulation of Nucleic acid structure forms. Nucleic acid genetic material (Avery <i>et al</i> 's experiment & Hershey hase's experiment)  A polymerases in Prokaryotes & Eukaryotes blication of DNA: Semi conservative replication of DNA esselsen & Stahl experiment), Uni–directional bi–actional replication of DNA &rolling circle DNA ication, DNA replication in prokaryotes (Initiation, agation & termination), DNA replication in eukaryotes |              |
| 2                                            | <ul> <li>(Initiation, elongation &amp; termination)</li> <li>Transcription: Transcription in prokaryotes (Promoter sites, initiation &amp; elongation, termination), Transcription in Eukaryotes (Promoter, enhancer &amp; silencer sites for initiation, transcription factors, elongation &amp; termination), RNA polymerase in prokaryotes &amp; Eukaryotes.</li> <li>RNA processing- capping, tailing &amp; splicing, ribozyme, RNA editing.</li> </ul> |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12           |
| 3                                            | <ul> <li>Protein Synthesis: Translation in Prokaryotes &amp; Eukarytoes         (Formation of aminoacyl tRNA, Initiation, Elongation &amp;             Termination of polypeptide). Post             translational Modification of proteins.</li> <li>Genetic code: Properties of genetic code, chain initiation &amp;             chain termination codons, wobble hypothesis.</li> </ul>                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12           |
| 4                                            | Regulation of regulation, The                                                                                                                                                                                                                                                                                                                                                                                                                               | rne and its organization  gene expression: Positive & Negative ne operon model for transcriptional regulation & Trp operon) control of lac operon, Trp operon.                                                                                                                                                                                                                                                                                          | 12           |

| 5 | Organization of genetic material: Chromosomal DNA content & C-Value paradox, Repetitive DNA, satellite DNA, (reassociation Kinetics, Chemical complexity & Kinetic complexity) | 12 |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|   | <ul> <li>Homologous recombination, Holliday model</li> </ul>                                                                                                                   |    |

- 1. Nelson, David L., and Michael M. Cox. (2017). Lehninger Principles of Biochemistry. 7th ed. New York, NY: W.H. Freeman.
- 2. Howell, S. H. (Ed.). (2014). Molecular Biology (2014th ed.). New York, NY: Springer.
- 3. Verma, P. S., & Agarwal, V. K. (2010). Molecular Biology. New Delhi, India: S Chand.
- 4. Cox, M. M., & O'Donnell, M. (2015). Molecular biology: Principles and practice (1st ed.). New York, NY: W.H. Freeman.

#### **Suggested online links:**

- https://onlinecourses.swayam2.ac.in/cec20 ma13/preview
- <a href="https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=molecularbiology">https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=molecularbiology</a>
- https://ocw.mit.edu/courses/biology/7-28-molecular-biology-spring-2005/
- https://www.ncbi.nlm.nih.gov/books/NBK9855/

## Semester-II Paper-I (Practical) Course Title: ELEMENTARY MOLECULAR BIOLOGY

|       | Total Number of Hrs = 60                                              |           |  |  |
|-------|-----------------------------------------------------------------------|-----------|--|--|
| Units | Content (Theory)                                                      | Number of |  |  |
|       |                                                                       | Hrs       |  |  |
| 1     | Estimation of DNA content in the given sample by diphenylamine Method | 12        |  |  |
| 2     | Estimation of RNA content by the Orcinol method                       | 12        |  |  |
| 3     | Isolation of DNA from bacterial or plant or animal cell               | 12        |  |  |
| 4     | Spectrophotometric Quantitation of DNA.                               | 12        |  |  |
| 5     | DNA Hyperchromacity.                                                  | 12        |  |  |

### **Semester-II**

## Paper-II (Theory) Course Title: BASICS OF GENETICS

**Course Objective:** Students will learn basic concepts in genetics and microbial genetics. They will learn genetic inheritance through historical experiments and get knowledge of chromosomeorganization.

| Credits: 6  Max. Marks: 100 |                                                                                                                  | Compulsory                                                                                                                                                                             |                       |
|-----------------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                             |                                                                                                                  | Min. Passing Marks:                                                                                                                                                                    |                       |
|                             |                                                                                                                  | Total Number of Lectures = 90                                                                                                                                                          |                       |
| Units                       | nits Content (Theory)                                                                                            |                                                                                                                                                                                        | Number of<br>Lectures |
| 1                           | • Introduction genetic termin                                                                                    | oncept of gene & genome ion of genetics, genotype, phenotype and other rminology laws of inheritance and their molecular tion.                                                         |                       |
| 2                           | <ul> <li>Chromosomes prokaryotic chromosomes numerical.</li> <li>Hereditary de</li> <li>Turners syndr</li> </ul> | s- structural organization and disorders of<br>and eukaryotic chromosomes, Kinds of<br>based on chromosomal aberration- structural &<br>fects- Kleinfelters syndrome, Down's syndrome, | 15                    |
| 3                           | • Mutation: spo<br>mutagens, inc                                                                                 | uction to mutations and mutagens. ion: spontaneous and induced, chemical and physical ens, induced mutations in plants, animals and microbes onomic benefits.                          |                       |
| 4                           | <ul> <li>Microbial gen<br/>mechanism of</li> </ul>                                                               | Introduction to Microbial genetics recombination.                                                                                                                                      |                       |
| 5                           | <ul><li>Introduction</li><li>Classical expedinkages and control</li></ul>                                        | to classical genetics experiments. to Genetic & physical maps eriment of genetics in drosophila for establishing crossing over. genetics – <i>Neurospora crassa</i> experiments        | 20                    |

#### **Books Recommended:**

- 1. Gardner EJ, Simmons MJ, Sunstad DP. Principles of Genetics. 8th Edition. John Wiley and Sons
- 2. Hartl, D. L., & Jones, E. W. (1998). Genetics: Principles and Analysis. Sudbury, MA: Jones

and Bartlett.

- Pierce, B. A. (2005). Genetics: a Conceptual Approach. New York: W.H. Freeman.
   Smith, J. M. (1998). Evolutionary Genetics. Oxford: Oxford University Press Genetics: Principles and Analysis – Hartl and Jones.

- 5. Snustand DP, Simmons MJ. **Principles of Genetics**. (2016) 7th Edition. John Wiley and Sons.
- 6. Verma PS, Agarwal VK. **Cell Biology, Genetics, Molecular Biology, Evolution and Ecology**. (2004). S Chand and Company Ltd.

### **Suggested online links:**

- https://nptel.ac.in/noc/courses/noc19/SEM1/noc19-bt05/
- https://www.classcentral.com/course/swayam-principles-of-genetics-23082
- https://onlinecourses.nptel.ac.in/noc21 bt02/preview
- https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=genetics
- https://nptel.ac.in/courses/102/103/102103012/
- https://nptel.ac.in/courses/102/106/102106025/
- https://nptel.ac.in/courses/102/103/102103015/

## Semester-II Paper-III (Theory + Practical)

### **Course Title:** Introductory Microbiology

**Course Objective**: Students will get general idea of common microorganisms; they will also learn basics of laboratory safety. They will have idea of basic laboratory techniques and would be able to apply the knowledge gained towards research, diagnostic, and therapeutic purposes.

| Credits:4+2                      | Compulsory          |  |
|----------------------------------|---------------------|--|
| Max. Marks: 100 + 25 (practical) | Min. Passing Marks: |  |

Total Number of Lectures = 60

| Unit | Content (Theory)                                                                                                                                                                                                                                                                                                                                                                                                              | Number<br>of<br>lectures |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 1    | <ul> <li>History of microbiology: Importance &amp; scope of microbiology</li> <li>Classification and nomenclature of Microbes</li> <li>Importance &amp; scope of microorganisms in human welfare</li> </ul>                                                                                                                                                                                                                   | 10                       |
| 2    | <ul> <li>Characteristics and examples of <i>Archaebacteria</i>, eubacteria, viruses, viroids and prions.</li> <li>Size, shape and arrangement of bacterial cells, cell wall, cytoplasmic membrane (Protoplasts, spheroplasts), flagella, pili, spores and cysts.</li> <li>Bacteriophage – lytic and lysogenic cycle; Staining techniques – simple (Monochrome and negative) and differential (Gram and acid fast).</li> </ul> | 15                       |

| 3 | <ul> <li>Control of microorganisms – Methods of sterilization, disinfection, sanitation, pasteurization, physical and chemical methods of control.</li> <li>Staining techniques – Simple (Monochrome and negative)</li> </ul>                                                                                                                       | 10 |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4 | <ul> <li>and differential (Gram and acid fast).</li> <li>Bacterial nutrition – Nutritional classes of microorganisms.</li> <li>Microbial media and its types.</li> <li>Isolation of pure culture from natural sources and its maintenance</li> </ul>                                                                                                | 10 |
| 5 | <ul> <li>Microbial growth – Growth curve, conditions affecting growth.</li> <li>Batch and continuous culture; Measurement of bacterial growth.</li> <li>Introduction to microbial pathogens &amp; diseases (Cholera, tuberculosis, tetanus, measles &amp; Mumps, influenza, rabies, Poliomyelitis, toxoplasmosis, HIV, Candidiasis etc.)</li> </ul> | 15 |

- Tortora, Gerard J., Berdell R. Funke, and Christine L. Case. 2004. Microbiology: an introduction: Pearson
- Pelczar, M. J., Jr, & etc. (1993). Microbiology: Concepts and Applications (6th ed.). London, England: McGraw-Hill Education (ISE Editions).
- Madigan, M. M., Martinko, J. M., Parker, J., Messley, K., & Norrell, S. (2003). *Brock biology of microorganisms: (international edition) with microbiology lab manual.* Upper Saddle River, NJ: Pearson.

### **Suggested online links:**

- https://nptel.ac.in/courses/102/103/102103015/
- https://dth.ac.in/medical/courses/Microbiology/block-1/1/index.php
- https://onlinecourses.swayam2.ac.in/cec19 bt11/preview
- https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=microbiology

## **Semester-II**

## Paper-III (Practical) Course Title: Introductory Microbiology Total Number of Hrs = 60

| Unit | Content (Practical)                                                                    | Number of Hrs. |
|------|----------------------------------------------------------------------------------------|----------------|
| 1    | Preparation of nutrient agar slants, plates and nutrient broth and their Sterilization | 8              |
| 2    | Inoculation of agar slants, agar plate and nutrient broth                              | 7              |
| 3    | Culture of micro-organism using various techniques                                     | 7              |
| 4    | Simple and differential staining procedures, endospore staining, flagellar             | 8              |
|      | staining, cell wall staining, Capsular staining, negative staining                     |                |
| 5    | Bacterial colony counting                                                              | 7              |
| 6    | Microscopic Observation of different vegetative, capsular and spore                    | 7              |
|      | forms of bacteria and fungus under                                                     |                |
|      | Isolation of microbes from soil samples and determination of the                       | 8              |
| 7    | number of colony forming units                                                         |                |
| 8    | Study of growth curve of <i>E. coli</i>                                                | 8              |

| Year | Semester                 | <b>Course Code</b> | Paper Title                                                      | 1 1                |            |  |  |
|------|--------------------------|--------------------|------------------------------------------------------------------|--------------------|------------|--|--|
|      | DIPLOMA IN BIOTECHNOLOGY |                    |                                                                  |                    |            |  |  |
| 2    | 3                        | UBT07-T            | Basic Cell Biology                                               | Theory             | 6          |  |  |
|      |                          | UBT08-<br>(T/P)    | Chemical Science II                                              | Theory + Practical | 4+2        |  |  |
|      |                          | UBT09-<br>(T/P)    | Fundamental<br>Biochemistry                                      | Theory + Practical | 4+2        |  |  |
|      |                          | -                  | Vocational                                                       |                    | 3          |  |  |
|      |                          |                    | Co-Curricular                                                    |                    | Qualifying |  |  |
|      | 4                        | UBT10-<br>(T/P)    | Basic Genetic<br>Engineering                                     | Theory + Practical | 4+2        |  |  |
|      |                          | UBT11-<br>(T)      | Elementary<br>Industrial<br>Microbiology                         | Theory             | 6          |  |  |
|      |                          | UBT12-T            | Food Biotechnology                                               | Theory             | 6          |  |  |
|      |                          | -                  | Elective (Either in 3 <sup>rd</sup> or 4 <sup>th</sup> semester) |                    | 4/5/6      |  |  |
|      |                          | -                  | Vocational                                                       |                    | 3          |  |  |
|      |                          |                    | Co-Curricular                                                    |                    | Qualifying |  |  |
|      |                          | ·                  |                                                                  | Total              | 46/47/48   |  |  |

## Semester-III Paper-I (Theory) Course Title: BASIC CELL BIOLOGY

**Course objective**: Students will understand basic cellular structure and function of cell-organelles. They will also get introduced to concepts of cell division and cell-death.

| Credits: 6 |                                                                                                                                                                                                | Compulsory                                                                                                                            |                       |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| N          | Iax. Marks: 100                                                                                                                                                                                | Min. Passing Marks:                                                                                                                   |                       |
|            |                                                                                                                                                                                                | Total Number of Lectures = 90                                                                                                         |                       |
| Units      |                                                                                                                                                                                                | Content (Theory)                                                                                                                      | Number of<br>Lectures |
| 1          | <ul><li>evolution; Eul</li><li>Biochemical</li></ul>                                                                                                                                           | of living system. The cell theory; Precellular karyotic and Prokaryotic cells. composition of cells (Protein, lipids, nucleic acids). | 20                    |
| 2          | <ul> <li>Structure an<br/>ultrastructure<br/>reticulum, mit<br/>lysosomes, pe</li> </ul>                                                                                                       | 30                                                                                                                                    |                       |
| 3          | <ul> <li>Structure of nucleus, nucleolus and chromosomes; Giant chromosomes (lampbrush &amp; polytene).</li> <li>Cytoskeletal structures (actin, microtubules intermediate filament</li> </ul> |                                                                                                                                       | 20                    |
| 4          | between cance                                                                                                                                                                                  | (Mitosis and Meiosis); Cell cycle; Difference erous and normal cells. ce, cell death and apoptosis.                                   | 20                    |

- Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2014). Molecular Biology of the Cell (6th Ed.). New York: Garland Science
- Cooper, G. M., and Hausman, R. E. (2013). The Cell: a Molecular Approach (6<sup>th</sup> Ed.). Washington: ASM; Sunderland.
- Karp, G. Cell and Molecular Biology. Concepts and experiments. John Harris, D., Wiley & sons, New York
- Iwasa J., Marshal W. Karp's Cell Biology(2018) (8th edition) Wiley & Sons, NY
- Iwasa J., Marshal W. Karp's Cell and Molecular Biology: Concepts and experiments. (2015) (8th edition) Wiley & sons, New York
- Watson, J. D. Baker TA, Bell, SP Gann, A. Levine, M. Losick R. (2008). Molecular Biology of the Gene (5th ed.). Pearson
- Lodish, H F. Berk, A. Kaiser, CA, Krieger, M. Bretscher, A. Ploegh, H. Aman, A. Martin, K. (2016). Molecular Cell Biology (8th Ed.). New York: W.H. Freeman
- Gupta P.K. Cell and Molecular Biology 2018. 5th edition Rastogi Publication India.

#### **Suggested online links:**

- https://ocw.mit.edu/courses/biological-engineering/20-310j-molecular-cellular-and-tissue-biomechanics-spring-2015/readings/MIT20 310JS15 Kamm2.2.pdf
- https://ocw.mit.edu/courses/find-bytopic/#cat=science&subcat=biology&spec=cellbiology
- https://onlinecourses.swayam2.ac.in/cec19 bt12/preview
- https://onlinecourses.nptel.ac.in/noc21 cy15/preview
- https://ocw.mit.edu/high-school/biology/exam-prep/cells/subcellular-organization/cytoskeleton/
- http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp\_content/S001174BS/P001859/M030475/ET/1 526877295P11 M14 ET.pdf
- https://epgp.inflibnet.ac.in/Home/ViewSubject?catid=2rAs1Puvga4LW93zMe83aA==

## Semester-III Paper-II (Theory + Practical) Course Title: Chemical science II

**Course objective**: Students would get basics of stereochemistry, isomerism, chemistry of organic compounds and that of various analgesics and other drugs.

| Credits: 4+2                   |                                                   | Compulsory                                                   |                                                |                                     |                       |
|--------------------------------|---------------------------------------------------|--------------------------------------------------------------|------------------------------------------------|-------------------------------------|-----------------------|
| Max. Marks: 100+25 (Practical) |                                                   | Min. Passing Marks:                                          |                                                |                                     |                       |
|                                |                                                   | Total Number o                                               | of Lectures $= 6$                              | 50                                  |                       |
| Units                          |                                                   | Content (Theory)                                             |                                                |                                     | Number of<br>Lectures |
| 1                              | configuration,<br>nomenclature),<br>nomenclature. | emistry: Geometenantiomerism, of and absolute conformational | distereoisomer<br>configuration<br>analysis, a | rism, D, L<br>on (R, S<br>and IUPAC |                       |

| 2 | <ul> <li>Reaction mechanism: type of organic reactions, reaction intermediates, S<sub>N1</sub>, S<sub>N2</sub>, E<sub>1</sub> and E<sub>2</sub> reactions, hemolytic and heterolytic fission, nucleophile, electrophiles, mechanism of Aldol condensation, Cannizaro reaction, Friedal craft reaction, Beckmann reagent, Dield-Alder reaction, Hoffmann-reaction, electrophilic substitution reactions, orientation effect.</li> </ul> | 12 |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | <ul> <li>Aliphatic and aromatic organic compounds: general method of<br/>preparation, properties, chemical reaction and application of<br/>both aliphatic and aromatic hydrocarbon, aldehydes, ketones,<br/>alcohols, ether, thioether, amines, amids, anhydrides, and<br/>carboxylic acids, phenols, organic chemistry of Sulphur<br/>compounds, chloramin-t, saccharin etc</li> </ul>                                                | 12 |
| 4 | <ul> <li>Heterocyclic aromatic compounds: pyridine, pyrol,quinoline, isoquinoline structure properties synthesis and applications.</li> <li>Basic concepts about bioactive natural product viz, alkaloids, terpenoids, steroids.</li> </ul>                                                                                                                                                                                            | 12 |
| 5 | Basic concept about analgesics, antipyretics, preparation and uses of asperin, paracetamol, sulphadrug viz sulphanilamide, sulphaquanidine and sulphapyridine.                                                                                                                                                                                                                                                                         | 12 |

- Lee, J.D., "Concise, Inorganic Chemistry", Oxford University Press, 2008, India, 5<sup>th</sup>
- Puri, B.R., Sharma, L.R., and Kalia, K.C., "Principles of Inorganic Chemistry", Vishal Publishing Co., India, 2020, 33<sup>rd</sup> edition.
- Mukerji, S.M., "Reaction mechanism in Organic Chemistry", Laxmi Publications, 2007, 3<sup>rd</sup> edition.
- Singh, Jagdamba and Yadav, L.D.S., "Undergraduate Organic Chemistry" Pragati Prakashan, India, 2011, Vol 1.
- Loudon, G. Marc, "Organic Chemistry", Oxford University Press, 2008, 4<sup>th</sup> edition.
- Atkins P.W., "Atkin's Physical Chemistry: International", Oxford University Press, 2018, 11<sup>th</sup> edition.
- Ball D.W., "Physical Chemistry", Cengage India Private Limited, 2017, 2<sup>nd</sup> edition.
- Puri, B.R., Pathania, M.S. and Sharma, L.R., "Principles of Physical Chemistry", Vishal Publishing, India, 2020, 47<sup>th</sup> edition.
- Madan, R.L., "Chemistry for Degree Students, B. Sc. First Year", S. Chand Publishing, New Delhi, India, 2011, 3<sup>rd</sup> edition.
- Madan, R.D., Malik, U.M. and Tuli, G.D., "Selected topics in Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2010.
- Chandra, S., "Comprehensive Inorganic Chemistry" New Age International Publishers, India, 2018, 1st edition.
- Prakash, S., Tuli, G.D., Basu, S.K. and Madan, R.D., "Advanced Inorganic Chemistry", S. Chand Publishing, New Delhi, India, 2000, Vol 1.
- Finar, I.L., "Organic Chemistry", Pearson Education India, 2002, 6<sup>th</sup> edition.

- Eliel, E.L. and Wilen, S.H., "Stereochemistry of Organic Compounds", Willey, 1994,1st edition.
- Boyd, Morrison and Bhattacharjee, "Organic Chemistry", Pearson Education India, 2010, 7<sup>th</sup> edition.

### **Suggested online links:**

- https://onlinecourses.nptel.ac.in/noc19 cy25/preview
- https://onlinecourses.swayam2.ac.in/nce19 sc15/preview
- https://nptel.ac.in/content/storage2/courses/104103022/download/module6.pdf
- https://www.openlearning.com/courses/introduction-to-physical-chemistry/?cl=1
- https://www.careers360.com/university/indian-institute-of-technology-bombay/chemistry-of-main-group-elements-certification-course
- https://onlinecourses.swayam2.ac.in/cec20\_lb01/preview
- https://nptel.ac.in/courses/104/103/104103071/

### Semester-III Paper-II (Practical)

Course Title: Chemical science II

|       | Total Number of Hrs = 60                                                                                               |               |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------|---------------|--|--|
| Units | Content (Theory)                                                                                                       | Number of Hrs |  |  |
| 1     | Preparation of organic compound, Nitration, Bromination, Acetylation etc.                                              | 15            |  |  |
| 2     | Preparation of Inorganic compound.                                                                                     | 15            |  |  |
| 3     | Paper, Thin layer and column chromatography of sugars, Amino acid, phenols etc.                                        | 15            |  |  |
| 4     | Qualitative analysis of inorganic mixture containing not more than six ionic species. (excluding insoluble substances) | 15            |  |  |

## Semester-III Paper-III (Theory + Practical) Course Title: FUNDAMENTAL BIOCHEMISTRY

**Course objective**: Theoretical and practical knowledge of various topics, including, macromolecules, enzymes, hormones, vitamins and metabolic pathways.

| Credit      | ts: 4+2                                                                                                           | Compulsory                                                                                                                                                                                                                                                                                                                                                        |                       |  |
|-------------|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|
| (Practical) |                                                                                                                   | Min. Passing Marks:                                                                                                                                                                                                                                                                                                                                               |                       |  |
|             |                                                                                                                   | Total Number of Lectures = 60                                                                                                                                                                                                                                                                                                                                     |                       |  |
| Units       |                                                                                                                   | Content (Theory)                                                                                                                                                                                                                                                                                                                                                  | Number of<br>Lectures |  |
| 1           | <ul> <li>Thermodynar biomolecules</li> <li>Carbohydrate Importance in classification, &amp; Quaternary</li> </ul> | s-Their functions and biological significance nics of biochemical reactions, Energy rich (ATP, NADP & Other phosphorylatedcompounds). s: chemical structure, classification & properties, n biological systems. Amino acids & peptides – properties & structure; primary, secondary, tertiary structure of proteins. ure, classification, properties & functions. | 15                    |  |
| 2           |                                                                                                                   | * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                             | 8                     |  |
| 3           | polynucleotid                                                                                                     | s: Base composition, nucleosides, nucleotides & e structure. Forms and types of nucleic acids, econdary structure of nucleic acids                                                                                                                                                                                                                                | 7                     |  |
| 4           | molecular lev                                                                                                     | ructure, chemical classification, Mode of action at el, functions in brief & regulation. ucture & Functions.                                                                                                                                                                                                                                                      | 7                     |  |
| 5           | pentose phosy<br>control of gly<br>phosphorylati<br>Nitrogen fixa<br>metabolism, g<br>Catabolism of               | control of Metabolism: Glycolysis, citric acid cycle, phate pathway, Glycogen breakdown & synthesis, cogen metabolism, Electron transport & Oxidative on, Fatty acid oxidation & Fatty acid biosynthesis, tion in plants & microorganisms, inborn errors of glucogenic & Ketogenic amino acids, Urea cycle, f Purine & pyrimidine nucleotides.                    | 15                    |  |
| 6           |                                                                                                                   | action; cell adhesion to matrix, cell locomotion action, cell beading). uns post                                                                                                                                                                                                                                                                                  | 8                     |  |

### **Books Recommended:**

| Nelson DL. Cox MM. (2017) Lehninger Princi | ples of Biochemistry (7th ed.). W H Freeman |
|--------------------------------------------|---------------------------------------------|
| New York.                                  |                                             |

- Voet, D., & Voet, J. G. (2016). Biochemistry (5th ed.). Hoboken, NJ: J. Wiley & Sons.
- Rodwell VW. Bender D. Botham KM. Kennelly PJ Weil PA.(2018). Harper's Illustrated Biochemistry. (31st edition) McGraw-Hill Education
- Berg, JM Tymoczko, JL. Gatto, GJ., Stryer, L. (2015). Biochemistry. (8th ed.) W H Freeman and Company New York.
- Hofmann A. Clokie S. Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. (2018) (8th edition) Cambridge University Press
- Boyer RF. (2012) Biochemistry laboratory: modern theory and techniques (2<sup>nd</sup> Edition). Pearson Education, Inc
- Jain JL. Jain S. Jain N. (2005). Fundamentals of Biochemistry. (6th edition). S Chand and
- Company Ltd.
- Satyanarayana U. Chakrapani U. (2013). Biochemistry (4th edition). Elsevier and Books and Allied (P) Ltd

### **Suggested online links:**

- https://ocw.mit.edu/courses/find-by-topic/#cat=healthandmedicine&subcat=spectroscopy
- https://nptel.ac.in/courses/104/105/104105076/
- https://nptel.ac.in/courses/102/106/102106087/
- https://ocw.mit.edu/courses/chemistry/5-07sc-biological-chemistry-i-fall-2013/module-i/session-4/
- https://www.youtube.com/channel/UCtiCUwgrWOPPz-qOu-QGRDg
- https://ocw.mit.edu/courses/biology/7-016-introductory-biology-fall-2018/lecturevideos/lecture-4-enzymes-and-metabolism/
- https://ocw.mit.edu/courses/chemistry/5-07sc-biological-chemistry-i-fall-2013/module-i/session-3/
- https://onlinecourses.swayam2.ac.in/cec20 bt12/preview

## Semester-III Paper-III (Practical)

Course Title: FUNDAMENTAL BIOCHEMISTRY

| Total Number of Hrs = 60                          |                                                                                                                                                                                                                        |  |  |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Content (Theory)                                  | Number of Hrs                                                                                                                                                                                                          |  |  |
| Estimation of Carbohydrates                       | 8                                                                                                                                                                                                                      |  |  |
| Estimation of Proteins                            | 8                                                                                                                                                                                                                      |  |  |
| Separation of Amino acids by Paper Chromatography | 12                                                                                                                                                                                                                     |  |  |
| Thin layer Chromatography                         | 8                                                                                                                                                                                                                      |  |  |
| Gel Electrophoresis                               | 8                                                                                                                                                                                                                      |  |  |
| Assay of enzyme activity and Enzyme kinetics      | 8                                                                                                                                                                                                                      |  |  |
| Saponification of Fats                            | 8                                                                                                                                                                                                                      |  |  |
|                                                   | Content (Theory)  Estimation of Carbohydrates  Estimation of Proteins  Separation of Amino acids by Paper Chromatography  Thin layer Chromatography  Gel Electrophoresis  Assay of enzyme activity and Enzyme kinetics |  |  |

## Semester-IV Paper-I (Theory + Practical) Course Title: BASIC GENETIC ENGINEERING

• Course Objectives: Students will obtain knowledge of various topics as per the syllabus including hands on training on different rDNA techniques, Restriction digestion, gelelectrophoresis, plasmid isolation etc. They would also learn basic tools of bioinformatics.

| Credits: 4+2  Max. Marks: 100+50 (Practical) |                                                                                                              | Compulsory                                                                                                                                                                                                                                                |                       |
|----------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
|                                              |                                                                                                              | Min. Passing Marks:                                                                                                                                                                                                                                       |                       |
|                                              |                                                                                                              | Total Number of Lectures = 60                                                                                                                                                                                                                             |                       |
| Units                                        |                                                                                                              | Content (Theory)                                                                                                                                                                                                                                          | Number of<br>Lectures |
| 1                                            | <ul> <li>Isolation &amp; P Bacteria, Plan</li> <li>Vectors: No phages, yeast</li> <li>Restriction</li> </ul> | ory of Genetic Engineering curification of genomic & plasmid DNA from at & Animal cells.  menclature, properties, plasmids, cosmids, vector, plant & animal vectors, cassette vectors.  enzymes & other enzymes required in DNA technology.               | 15                    |
| 2                                            | synthesis, cD (Maxma Gilbo & application situ hybridiza screening. • Genomic libra                           | to techniques in Molecular Biology: Gene DNA synthesis & cloning, Gene sequencing ert method & Sanger's method), PCR (its forms a). Northern, Southern & Western blotting. In ation, dot blots cDNA library construction & early construction & screening | 15                    |
| 3                                            | Basic princip technology,                                                                                    | tors, Blunt end ligation, Homopolymer tailing ble & introduction of antisense & ribozyme post transcriptional gene silencing (RNAi Gene therapy, Introduction to microarray                                                                               | 10                    |
| 4                                            | coli) & Eukar                                                                                                | pression of foreign genes in Prokaryotes (E. yotes (e.g. yeast). f recombinant DNA technology.                                                                                                                                                            | 10                    |
| 5                                            | e- mail, web s<br>& retrieval da<br>(FASTA, BLA                                                              | es: History and scope, concepts of CD-ROM, sites, internet networking, database, collection ta of gene bank. Tools for sequence alignment AST, PSI-BLAST), primer designing, analysis, database searching for similar                                     | 10                    |

### **Books Recommended:**

• Brown, T. A. (2006). Gene Cloning and DNA Analysis: an Introduction. Oxford: Blackwell

Pub.

- Primrose, S. B., & Twyman, R. M. (2006). Principles of Gene Manipulation and Genomics. Malden, MA: Blackwell Pub.
- Slater, A., Scott, N. W., & Fowler, M. R. (2003). Plant Biotechnology: The Genetic Manipulation of Plants. Oxford: Oxford University Press.
- Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechnology: an Introduction to Genetic Engineering. Oxford: Oxford University Press

### **Suggested online links:**

- https://onlinecourses.nptel.ac.in/noc19\_bt15/preview
- https://nptel.ac.in/courses/102/103/102103013/
- https://www.classcentral.com/course/swayam-genetic-engineering-theory-and-application-14090
- https://onlinecourses.swayam2.ac.in/cec19 bt02/preview
- https://ocw.mit.edu/courses/biology/7-01sc-fundamentals-of-biology-fall-2011/recombinant-dna/
- https://ocw.mit.edu/courses/biology/7-16-experimental-molecular-biology-biotechnology-ii-spring-2005/

## Semester-IV Paper-I (Practical) Course Title: BASIC GENETIC ENGINEERING

|       | Total Number of Hrs = 60                                                            |                  |  |  |
|-------|-------------------------------------------------------------------------------------|------------------|--|--|
| Units | Content (Theory)                                                                    | Number of<br>Hrs |  |  |
| 1     | Isolation of Plasmid DNA                                                            | 20               |  |  |
| 2     | Restriction digestion with EcoRI' HindIII or any other restriction enzyme available | 20               |  |  |
| 3     | Agarose gel electrophoresis of Restricted and Unrestricted DNA fragments.           | 20               |  |  |

### Semester-IV Paper-II (Theory)

### Course Title: Elementary Industrial Microbiology

**Course Objective:** This course introduces students to various aspects of industrial microbiology, including, Microbial isolation techniques, GRAS microbes, fermentation, downstream processing etc. It also provides idea of production of antibiotics, alcohol, vitamins, amino acids, biofuels and biofertilizers etc.

| Credits: 6      |                                                                                                                     | Compulsory                                                                                                                                                                   |                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| Max. Marks: 100 |                                                                                                                     | -Min. Passing Marks:                                                                                                                                                         |                                         |
|                 |                                                                                                                     | Total Number of Lectures = 90                                                                                                                                                |                                         |
| Unit            |                                                                                                                     | Topics                                                                                                                                                                       | Total No. of<br>Lectures/<br>Hours (90) |
| I               |                                                                                                                     | iplinary nature of Industrial microbiology. A typical Bio, advantages & limitations. Patents and intellectual property                                                       | 10                                      |
| П               | characteristics of mic                                                                                              | y of industrially useful bacteria & fungi. Important crobes used in Industrial Microbiology, Isolation techniques. of microorganisms classified as Generally Regarded asSafe | 20                                      |
| Ш               | Exploitation of microorganism and their products, Screening, Strain development strategies, Immobilization methods. |                                                                                                                                                                              | 10                                      |
| IV              |                                                                                                                     | , Raw material, Antifoaming agents, Buffers. Equipments, pes of fermentation – Single, Batch, Continuous.                                                                    | 10                                      |
| V               |                                                                                                                     | sing steps: Detection and assay of the product, Recovery xtracellular product). Purification (solvent extraction &                                                           | 10                                      |
| VI              | Production of Alcoho<br>(Citric acid), Antibio                                                                      | ol (industrial alcohol, wine, beer, whiskey), Organic acid tic (Penicillin)                                                                                                  | 10                                      |
| VII             |                                                                                                                     | n (B12), Enzyme (Amylase), Amino acid (Glutamic acid),<br>Vaccine (Hepatitis B).                                                                                             | 10                                      |
| VIII            | Biofuel (Methane)<br>Biotransformation of                                                                           |                                                                                                                                                                              | 10                                      |

### **Recommended Books:**

- Industrial Microbiology (2000) by AH Patel, Macmillan Publishers India
- Biology of Industrial microorganism (1981) by Arnold L. Domain, Bejamin/ cummings Pub. Co.
- Industrial Microbiology by Prescott & Dunns, AVI Publishing Company Inc.
- Industrial Microbiology by Casida LE, New age International (P) Ltd.

### Suggested links:

- http://foodhaccp.com/foodsafetymicro/onlineindex.html
- http://www.cpe.rutgers.ed/courses/current/If0401wa.html

### Semester-IV Paper-III (Theory)

Course Title: Food Biotechnology

**Course objective**: Students will understand the concepts of food biotechnology and would beable to relate the role of biotechnology in the food industry. They will get concepts regarding, food components, preservation, fermentation, spoilage and microbes involved in fermentation and spoilage.

| Credits: 6 | Compulsory                                                                                                                                                                                                                                                                                            | 7               |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Max. N     | Marks: 100 Min. Passing Marks:                                                                                                                                                                                                                                                                        |                 |
|            | Total Number of Lectures = 90                                                                                                                                                                                                                                                                         |                 |
| Unit       | Topic                                                                                                                                                                                                                                                                                                 | No. of Lectures |
| I          | Introduction to Food Biotechnology                                                                                                                                                                                                                                                                    | 10              |
|            | sauerkraut, soy bean, coffee, cocoa, tea)                                                                                                                                                                                                                                                             | bread,          |
|            | nutritional labelling in India, FSSAI guidelines                                                                                                                                                                                                                                                      | inies,          |
|            | Improvements through Biotechnology (e.g. Golde Rice, Potato, Flavr Savr Tomato etc.)                                                                                                                                                                                                                  | en              |
| II         | Enzymes in Food Industry:                                                                                                                                                                                                                                                                             | 12              |
|            | <ul> <li>Carbohydrases</li> </ul>                                                                                                                                                                                                                                                                     |                 |
|            | <ul> <li>Proteasase</li> </ul>                                                                                                                                                                                                                                                                        |                 |
|            | • Lipases                                                                                                                                                                                                                                                                                             |                 |
|            | <ul> <li>Modification of food using enzymes:</li> </ul>                                                                                                                                                                                                                                               |                 |
|            | <ul> <li>Role of endogenous enzymes in food quality,</li> </ul>                                                                                                                                                                                                                                       |                 |
|            | <ul> <li>Enzymes use as processing aid and ingredients</li> </ul>                                                                                                                                                                                                                                     |                 |
| III        | Food Fermentations:                                                                                                                                                                                                                                                                                   | 12              |
|            | <ul> <li>Common fermented foods - Cheese, Butter, Yogh fermented/condensed milk and kefir.</li> <li>Alcoholic beverages (Beer, Wine, Whisky),</li> <li>Sauerkraut, Pickles, Soy products, Tea, coffee etc.</li> </ul>                                                                                 |                 |
| IV         |                                                                                                                                                                                                                                                                                                       |                 |
|            | <ul> <li>Food adulteration and prevailing food standa India.</li> <li>Source of microorganisms in milk and their typ</li> <li>Microbiological examination of milk (standard count, direct microscopic count, reductase phosphatase test).</li> <li>Dehydration and pasteurization of milk.</li> </ul> | es.             |

| V    | <ul><li>Value addition products:</li><li>Value addition products like High Fructose Syrup,</li></ul>                                                        | 12 |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|      | Invert Sugars etc. SCPs (e.g. Spirulina, Yeast etc.) as                                                                                                     |    |
|      | food supplements,                                                                                                                                           |    |
|      | • Edible fungus: Mushrooms. Potential of Probiotics.                                                                                                        |    |
|      | • Flavor enhancers: Nucleosides, nucleotides and related                                                                                                    |    |
|      | compounds. Organic acids (Citric acid, Acetic                                                                                                               |    |
|      | acid) and their uses in foods/food products.                                                                                                                |    |
| VI   | Vitamins and Minerals:                                                                                                                                      | 12 |
|      | <ul> <li>Importance of Vitamins and their supplementation in<br/>foods and feedstock.</li> </ul>                                                            |    |
|      | <ul> <li>Food preservation and storage. Food Processing</li> </ul>                                                                                          |    |
|      | Important minerals and their function in body and deficiency conditions                                                                                     |    |
|      | <ul> <li>Requirements, allowances, enrichment, restorations,<br/>fortifications, losses of minerals, optimization and<br/>retention of minerals;</li> </ul> |    |
| VII  | Growth of microorganisms in food:                                                                                                                           | 10 |
|      | • Intrinsic and extrinsic factors.                                                                                                                          |    |
|      | • Food Spoilage (microbial and non-microbial) Control                                                                                                       |    |
|      | mechanisms of food spoilage: Physical and Chemical.                                                                                                         |    |
|      | • Microbial spoilage of food and factors affecting them:                                                                                                    |    |
|      | Spoilage of various kinds of foods: fish. meat, poultry,                                                                                                    |    |
|      | sea foods, bread and dairy products).                                                                                                                       |    |
|      | <ul> <li>Food adulteration and prevailing food standards in<br/>India.</li> </ul>                                                                           |    |
|      | <ul> <li>Indicator Microorganisms: As an indicator of good quality</li> </ul>                                                                               |    |
| VIII | Food and water borne diseases:                                                                                                                              | 12 |
|      | Gastroenteritis, Diarrhoea, Shigellosis, Salmonellosis,                                                                                                     |    |
|      | Typhoid, Cholera, Polio, Hepatitis, Dental Infections,                                                                                                      |    |
|      | etc.                                                                                                                                                        |    |
|      | <ul> <li>Food borne intoxications: Staphylococcal, Bacillus,<br/>Clostridium etc.</li> </ul>                                                                |    |
|      | <ul> <li>Detection of food-borne pathogens.</li> </ul>                                                                                                      |    |

#### Suggested Books

- Ray B and Bhunia A. 2008. Fundamental Food Microbiology, 4th Ed., CRC press, Taylor and Francis Group, USA.
- Martin RA and Maurice OM. 2008. Food Microbiology, 3rd Ed., The Royal Society of Chemistry, Cambridge, UK.
- James M J. 2000. Modern Food Microbiology, 6th Ed. Aspen Publishers, Inc., Gaithersburg, Maryland, USA.
- Frazier WC, and Westhoff DC. Food Microbiology. Fourth edition, MacGraw Hills publication
- Lopez GFG, Canaas G, Nathan EV. Food Sciences and Food biotechnology.
- Adams AR, and Moss MO. *Food Microbiology*. Third edition, Royal Society of Chemistry publishing.
- Hohn T and Leisinger KM. Biotechnology of Food Crops in Developing Countries.
- Doyle MP, Beuchat LR and Montville TJ. Food Microbiology Fundamentals and Frontiers. ASM Press.
- Schwartzberg HG, RaoMA. (Eds.) Biotechnology and Food Process Engineering.

## Semester-V Paper-I (Theory + Practical) Course Title: BASICS OF IMMUNOLOGY

Course Objective: Students will learn various organs, cells and responses of Immune system. They would also learn responses generated by Lymphocytes, Antigen-Antibody interactions, various immunological techniques and immune disorders.

| Cro                               | edits: 4+2 | Compulsory                                                                               |           |
|-----------------------------------|------------|------------------------------------------------------------------------------------------|-----------|
| Max. Marks: 100+50<br>(Practical) |            | Min. Passing Marks:                                                                      |           |
|                                   |            | Total Number of Lectures = 60                                                            |           |
| Uni                               |            | Content (Theory)                                                                         | Number of |
| ts                                |            |                                                                                          | Lectures  |
| 1                                 |            | mmune system organs and cells acquired.                                                  | 12        |
| 2                                 |            | nechanisms against infection- Innate & acquired. ve immunity, primary & secondary Immune | 12        |
| 3                                 |            | outes of antigens epitops, heptans & Carriers, cture, Immunoglobulin classes & antibody  | 12        |

| 4 | Antigen & Antibody interaction in vivo & vitro. Agglutination & Precipitation reaction, Hemoagglutination, Immunofluorescence, ELISA, RIA etc.                                                                                | 12 |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5 | General idea about MHC in mouse, HLA system in humans, significance of MHC molecules & basic idea of complement                                                                                                               | 12 |
|   | <ul> <li>system.</li> <li>Monoclonal antibodies &amp; their applications.</li> <li>Immune disorders- Autoimmune diseases (Rheumatoid arthritis, Hashimoto's thyroiditis, &amp; immunodeficiency (AIDS &amp; SCID).</li> </ul> |    |

- Paul W E. (2012). Fundamental Immunology. New York: Raven Press.
- Punt J, Stranford S, Jones P., Owen JA, (2018). Kuby Immunology. (8th edition) New York:
   W.H. Freeman.
- Hay FC, Westwood OMR.(2008). Practical Immunology.(4th Edition). Wiley
- Delves P J, Martin SJ, Burton DR, and Roitt IM. (2017). Roitt's Essential Immunology.(13th edition). Wiley- Blackwell.
- Murphy K, and Weaver C, (2016). Janeway's Immunobiology. (9th edition) New York: Garland Science.
- Abbas AK, Lichtman AHH, Pillai S (2017) Cellular and Molecular Immunology (9th edition)
- Mohanty SK, Leela KS (2014) Textbook of Immunology. (2nd Edition). Jaypee Brothers Medical Publishers Pvt Ltd.
- Paul W E. (2012). Fundamental Immunology. New York: Raven Press.
- Parham, P. (2005). The Immune System. New York: Garland Science. Blackwell.

- https://onlinecourses.swayam2.ac.in/cec20 bt05/preview
- https://www.classcentral.com/course/swayam-immunology-14117
- http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp\_content/S000035ZO/P001308/M020592/ET/1 519021131M14DiversityofimmunoglobulinQuad1.pdf
- https://ocw.mit.edu/courses/find-by-topic/#cat=healthandmedicine&subcat=immunology
- https://nptel.ac.in/courses/102/103/102103038/
- http://epgp.inflibnet.ac.in/epgpdata/uploads/epgp\_content/S000035ZO/P001308/M020597/ET/1 498640388PrinciplesandapplicationsSPRQuad1.pdf
- https://nptel.ac.in/courses/102/105/102105083/https://nptel.ac.in/courses/102/103/102103015/
- https://nptel.ac.in/content/storage2/courses/102103013/pdf/mod7.pdf

### Semester-V Paper-I (Practical)

Course Title: BASICS OF IMMUNOLOGY

| Total Number of Hrs = 60 |                                                                                             |           |  |
|--------------------------|---------------------------------------------------------------------------------------------|-----------|--|
| Units                    | Content (Theory)                                                                            | Number of |  |
|                          |                                                                                             | Hrs       |  |
| 1                        | Demonstration of immunization techniques and bleeding of experimental animals.              | 15        |  |
| 2                        | Separation of serum.                                                                        | 15        |  |
| 3                        | Antibody and Antigen interaction- Agglutination, Precipitation, Ochterlony double diffusion | 15        |  |
| 4                        | ELISA                                                                                       | 15        |  |

### **Semester-V**

### Paper-II (Theory)

Course Title: INTRODUCTORY ANIMAL BIOTECHNOLOGY

**Course Objective**: Students will learn theoretical and practical aspects of animal cell culture & its applications, vaccine technology, immunodiagnostics, embryo technology, animal transgenesis and gene therapy etc.

| Credits: 4 |                                                                                                                                                                                                                                                                                                                   | Compulsory                    |           |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------|
| N          | Max. Marks: 100                                                                                                                                                                                                                                                                                                   | Min. Passing Marks:           |           |
|            |                                                                                                                                                                                                                                                                                                                   | Total Number of Lectures = 60 |           |
| Units      |                                                                                                                                                                                                                                                                                                                   | Content (Theory)              | Number of |
|            |                                                                                                                                                                                                                                                                                                                   |                               | Lectures  |
| 1          | Animal Cell Culture:  History and development of cell culture  Layout and basic requirements for cell culture laboratory  Sterilization and preparation for cell culture  Culture media – Natural and synthetic; Importance of serum in cell culture  Growth factors- EGF, ECF, PDGE, IL –2, NGF & erythropoietin |                               | 12        |
| 2          | <ul><li>Development o</li><li>Commonly use<br/>(Vero, BHK-21</li><li>Subculture and</li></ul>                                                                                                                                                                                                                     |                               | 12        |

| 3 | Immunodiagnostics and Vaccine Technology                                                                                | 12 |
|---|-------------------------------------------------------------------------------------------------------------------------|----|
|   | Introduction to immunodiagnostics                                                                                       |    |
|   | Monoclonal antibodies                                                                                                   |    |
|   | Introduction to vaccines                                                                                                |    |
|   | Types of vaccines                                                                                                       |    |
|   | Killed V/s Attenuated vaccines                                                                                          |    |
|   | Modern generation vaccines                                                                                              |    |
| 4 | Embryo Biotechnology and Animal Cloning                                                                                 | 12 |
|   | Embryo Biotechnology: Introduction to embryo transfer                                                                   |    |
|   | technology                                                                                                              |    |
|   | Brief Introduction to developmental Biology: oocyte, sperm,                                                             |    |
|   | fertilization, embryogenesis                                                                                            |    |
|   | Methodology: Selection of donor; superovulation; selection of                                                           |    |
|   | recipient; synchronization of estrous; embryo transfer;                                                                 |    |
|   | cryopreservation                                                                                                        |    |
|   | Animal Cloning: Introduction to animal cloning                                                                          |    |
|   | Importance and scope of animal cloning                                                                                  |    |
|   |                                                                                                                         |    |
| 5 | Fermentation Technology and Animal Transgenesis                                                                         | 12 |
|   | Introduction to fermentation Technology                                                                                 |    |
|   | Bioreactors for large scale production of animal cells                                                                  |    |
|   | Production of hormones and special secondary metabolites- insuling growth hormone and interference.                     |    |
|   | insulin, growth hormone and interferon                                                                                  |    |
|   | <ul><li>A brief introduction to animal transgenesis.</li><li>Various methods of animal transgenesis.</li></ul>          |    |
|   | <ul> <li>Various methods of animal transgenesis.</li> <li>Gene Therapy: Introduction; Types of gene therapy,</li> </ul> |    |
|   | Applications. Socio ethical issues                                                                                      |    |
|   | Applications. Socio cuiteat issues                                                                                      |    |
|   |                                                                                                                         |    |

- Animal Cell Culture Techniques. Ed. Martin Clynes, springer.
- Animal Cell Culture Practical Approach, Ed. John R.W. Masters, OXFORD.
- Culturing of animal cells by Ian Freshney, 6<sup>th</sup> edition
- Pörtner, R. (2007). Animal Cell Biotechnology: Methods and Protocols. Totowa, NJ: Humana Press
- Singh B. Gautam SK (2013). Textbook of animal biotechnology. The Energy and Resources Institute, TERI
- Gupta PK (2018) Animal Biotechnology. Rastogi Publications
- Animal Cell Culture Methods In: Methods in Cell Biology, Vol. 57, Ed. Jenni P Mather and David Barnes, Academic Press.
- Biotechnology: Expanding Horizons by BD Singh, 3<sup>rd</sup> Edition, Kalyani Publishers.

- https://www.nptel.ac.in/content/storage2/courses/102103012/pdf/mod6.pdf
- https://nptel.ac.in/courses/102/104/102104042/
- https://nptel.ac.in/content/storage2/courses/102103038/download/module2.pdf
- https://www.nptel.ac.in/noc/courses/noc20/SEM1/noc20-me04/
- https://ocw.mit.edu/courses/find-by-topic/#cat=science&subcat=biology&spec=stemcells
- https://ocw.mit.edu/courses/materials-science-and-engineering/3-051j-materials-forbiomedical-

- applications-spring-2006/lecture-notes/lecture13.pdf
- https://ocw.mit.edu/courses/biological-engineering/20-109-laboratory-fundamentals-inbiological-engineering-fall-2007/lecture-notes/
- https://ocw.mit.edu/courses/health-sciences-and-technology/hst-535-principles-andpracticeof-tissue-engineering-fall-2004/

## Semester-V Paper-III (Theory) Course Title: ENVIRONMENTAL BIOTECHNOLOGY

**Course objective**: Theoretical knowledge of various topics as per the syllabus including ecosystem, conservation of biodiversity and resources, conventional and alternative fuels, and waste management. They will also study of role of biotechnological techniques in environment protection.

| Credits: 4 |                                                             | Compulsory                                         |           |
|------------|-------------------------------------------------------------|----------------------------------------------------|-----------|
| N          | Max. Marks: 100                                             | Min. Passing Marks:                                |           |
|            |                                                             | Total Number of Lectures = 60                      |           |
| Units      |                                                             | Content (Theory)                                   | Number of |
|            |                                                             |                                                    | Lectures  |
| 1          | Basic concept of Ecosystem- types, structure and functions. |                                                    | 12        |
|            |                                                             | d non- renewable resources                         |           |
|            |                                                             | of Biodiversity, in situ, ex situ, Gene bank.      |           |
|            |                                                             | sensors, biopolymers, bio plastic and              |           |
| 2          | biochips.                                                   | anagement Treatment of municipal wests             | 12        |
| 2          | and industrial                                              | anagement- Treatment of municipal waste effluents. | 12        |
|            |                                                             | d soil pollution management- Management            |           |
|            |                                                             | ous solid waste and medical solid waste.           |           |
|            |                                                             | of hazardous waste                                 |           |
|            | Air pollution a                                             |                                                    |           |
|            | Reclamation of                                              | of wasteland                                       |           |
| 3          |                                                             | fuels (Firewood, coal, gas, animal oils) and       | 12        |
|            |                                                             | mental impact.                                     |           |
|            |                                                             | - Methanogenic bacteria & biogas, microbial        |           |
|            |                                                             | duction, solar energy.                             |           |
|            |                                                             | etroleum industry                                  |           |
|            | ·                                                           | - Bacterial & Fungal                               |           |
|            | Biofertilizers     vermicompos                              | - Nitrogen fixers, PSB, Mycorrhiza & VAM; ting.    |           |

| 4 | <ul> <li>Bioabsorption of metals- microorganisms and metal absorption; bacterial metal resistance; mechanism of bioabsorption; Phytoremediation</li> <li>Bioremediation- microorganisms in bioremediation; bioremediation technologies.</li> <li>Biorecovery of petroleum- MEOR</li> </ul>                                                                                      | 12 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 5 | <ul> <li>Concept of biosafety in relation to:</li> <li>Organism pathogenicity</li> <li>Biological active biotechnology product</li> <li>Release of GMOs to the environment</li> <li>Genetic modification and food uses</li> <li>Biosafety and recombinant DNA guidelines</li> <li>Concept of GMP(Good manufacturing practices) &amp; GLP (Good Laboratory practices)</li> </ul> | 12 |

- Ritmann R and McCarty P L (2000). Environmental Biotechnology: Principle & Applications. 2nd Ed., McGraw Hill Science.
- Thakur IS. (2011) Environmental Biotechnology basic concepts and applications. I.K. International Publishing House Pvt. Limited
- Srinivas TR (2008). Environmental Biotechnology. New Age International Pvt. Ltd.
- Evans GM and J. C. Furlong (2003). Environmental Biotechnology: Theory and Applications. Wiley Publishers.
- Scragg A., (2005) Environmental Biotechnology. Pearson Education Limited.
- Chapman JL Ecology: Principal & Application. Cambridge Univ. Press.
- Odum E and Barret G. (2004) Fundamentals of Ecology. Nataraj Publication.

- https://nptel.ac.in/courses/127/106/127106004/
- https://nptel.ac.in/courses/102/105/102105088/
- https://onlinecourses.swayam2.ac.in/ugc19 bt18/preview
- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-34-waste-containmentand-remediation-technology-spring-2004/lecture-notes/
- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-018j-ecology-i-theearth-system-fall-2009/
- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-018j-ecology-i-theearth-system-fall-2009/lecture-notes/MIT1 018JF09 Lec07.pdf
- https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-89-environmentalmicrobiology-fall-2004/

## Semester-V Paper-IV (Theory) Course Title: Molecular Cancer Biology

| Cre      | dits: 4                                                                                                                    | Compulsory                                                                                                                                                                                                                                                                                             |                                             |
|----------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|          | Max. Marks: 100 Min. Passing Marks:                                                                                        |                                                                                                                                                                                                                                                                                                        |                                             |
|          |                                                                                                                            | Total Number of Lectures = 60                                                                                                                                                                                                                                                                          |                                             |
| Uni<br>t |                                                                                                                            | Topics                                                                                                                                                                                                                                                                                                 | Total No. of<br>Lecture<br>s/ Hours<br>(90) |
| I        | ultrastructural properti<br>malignant tumors. Typ                                                                          | characteristics of cancers cells; Morphological and<br>ies of cancer cells. Differences between benign and<br>ies of growth: hyperplasia, dysplasia, anaplasia and<br>ire of neoplasms. Epidemiology of cancer                                                                                         |                                             |
| П        | development; Paraneo activation. Growth fac                                                                                | biochemistry- Aberrant metabolism during cancer<br>plastic syndromes; cellular protooncogenes- oncogene<br>tors-EGF, TNF- and TGF- and growth factor receptors<br>cancer. Role of transcription factors,                                                                                               |                                             |
| III      | Initiation, promotion a                                                                                                    | al carcinogenesis- stages in chemical carcinogenesis-<br>and progression. Free radicals, antioxidants in cancer<br>DNA and RNA Viruses. Hormone mediated<br>ans                                                                                                                                        |                                             |
| IV       | Cell Cycle Regulation-<br>BRACA2. Telomeres,<br>cell adhesion-invasion<br>Epigenetics-Role of Di<br>silencing of tumor-sup | -Tumor suppressor genes p53, p21, Rb, BRACA1 and Telomerase, and Immortality; cell- cell interactions, and metastasis - VEGF signaling, angiogenesis; NA methylation in gene silencing- epigenetic pressor genes; Apoptosis in cancer-Cell death by spases; Death signaling pathways-mitochondrial and | 12                                          |
| V        | of therapy, Chemot                                                                                                         | Prediction of aggressiveness of Cancer, Differentforms herapy, radiation Therapy, and Immunotherapy: ions. Epigenetics of cancer, Identification of targets                                                                                                                                            |                                             |

### Recommended Books:

- The Molecular Biology of Cancer: S. Pelengaris, M. Khan. Blackwell Publication.
- Cancer Associated Viruses (2012), Erle S. Robertson (Editor); Springer Science & Business Media
- The Biological Basis of Cancer: R. G. McKinnell, et al 2nd Ed, Cambridge University Press, 2006.
- The Biology of Cancer: R. A. Weinberg. Garland Science. 2006.
- Virology a practical approach, Maly B.W.J. IRL Press, Oxford, 1987.

- Introduction to modern Virology, Dunmock N.J and Primrose.S.B., Blackwel Scientific Publications. Oxford, 1988.
- An Introduction to Cellular & Molecular Biology of Cancer, Oxford Medical publications, 1991
- Gene expression systems. Joseph M. Fernandez & James P. Hoeffler. Academic Press, 1999.
- Cancer Biology IV Ed Volume2 Raymond W Ruddon M.D.(2007)
- Cancer Biology (3rd Edition) Roger J.B. et al (2006)
- Advances in Cancer Stem Cell Biology, Roberto Scatena, Alvaro Mordente & Bruno Giardina (Ed) Springer(2012).

### Suggested links:

- https://nptel.ac.in/content/storage2/courses/104103068/pdf/M4.pdf
- https://onlinecourses.swayam2.ac.in/aic20\_ge02/preview
- https://dth.ac.in/medical/courses/pathology/2/3/index.php
- https://ocw.mit.edu/courses/biology/7-016-introductory-biology-fall-2018/lecture-videos/lecture-25- cancer-1/
- https://ocw.mit.edu/courses/biology/7-342-cancer-biology-from-basic-research-to-the-clinic-fall-2004/

## Semester-VI Paper-I (Theory + Practical) Course Title: INTRODUCTORY PLANT BIOTECHNOLOGY

Course objective: The course introduces students to basics of plant biotechnology: Media preparation and sterilization, cryopreservation, growth hormones, in-vitro micropropagation of plant tissue, anther, pollens etc. Marker assisted selection, genetic fidelity markers, plant transgenesis etc would also be taught.

| Credits: 4+2  Max. Marks: 100+25 (Practical) |                                                            | Compulsory                                                                         |              |
|----------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------|--------------|
|                                              |                                                            | Min. Passing Marks:                                                                |              |
|                                              |                                                            | Total Number of Lectures = 60                                                      |              |
| Units                                        |                                                            | Content (Theory)                                                                   | Number<br>of |
|                                              |                                                            |                                                                                    | Lectures     |
| 1                                            | <ul><li>Applications</li><li>Selection &amp; ste</li></ul> | ad history of plant tissue culture  crilization of explant esterlization & culture | 12           |
|                                              | <ul> <li>Growth regulat</li> </ul>                         |                                                                                    |              |
| 2                                            | <ul> <li>Micropropogat</li> </ul>                          | s and its application<br>ion<br>yogenesis & organogenesis                          | 12           |

|   | Anther and Ovary culture                                                                                                                                                                       | 12 |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | <ul> <li>Di haploids and their applications</li> </ul>                                                                                                                                         |    |
|   | <ul> <li>In Vitro pollination &amp; fertilization</li> </ul>                                                                                                                                   |    |
|   | <ul> <li>Their applications in plant breeding</li> </ul>                                                                                                                                       |    |
| 4 | DNA Markers                                                                                                                                                                                    | 12 |
|   | Types of markers                                                                                                                                                                               |    |
|   | <ul> <li>Applications of DNA markers in plant science</li> </ul>                                                                                                                               |    |
|   | <ul> <li>Diversity analysis, mapping and tagging, evolutionary studies<br/>and marker assisted selection.</li> </ul>                                                                           |    |
| 5 | <ul> <li>Plant transformation &amp; methods: Agrobacterium-mediated,<br/>biolistic, transfection etc. successful examples of transgenic<br/>plants, advantage of transgenic plants.</li> </ul> | 12 |
|   | <ul> <li>Recent developments in transformation methods.</li> </ul>                                                                                                                             |    |

#### **Recommended Books:**

- Razdan, M. K. (2003). Introduction to Plant Tissue Culture. Enfield, NH: Science
- Chawla, H. S. (2000). Introduction to Plant Biotechnology. Enfield, NH: Science.
- Smith R. (2012). Plant Tissue Culture (3rd Edition) Academic Press.
- Slater, A., Scott, N. W., & Fowler, M. R. (2008). Plant Biotechnology: an Introduction to Genetic Engineering. Oxford: Oxford University Press.

- https://nptel.ac.in/courses/102/103/102103016/
- https://www.bhu.ac.in/science/biotechnology/syllabi/M.Sc%20(BioTechnology)%20including %20SWAYAM.pdf
- https://onlinecourses.swayam2.ac.in/cec19 bt01/preview
- https://onlinecourses.swayam2.ac.in/cec21 bt02/preview
- https://onlinecourses.swayam2.ac.in/cec21 bt03/preview
- https://nptel.ac.in/content/storage2/courses/102103013/pdf/mod6.pdf

# Semester-VI Paper-I (Practical) Course Title: INTRODUCTORY PLANT BIOTECHNOLOGY

|       | Total Number of Hrs = 60                                   |                  |  |  |
|-------|------------------------------------------------------------|------------------|--|--|
| Units | Content (Theory)                                           | Number of<br>Hrs |  |  |
| 1     | Plant tissue culture, Media preparation                    | 10               |  |  |
| 2     | Ex plant selection and sterilization                       | 10               |  |  |
| 3     | Callus culture                                             | 10               |  |  |
| 4     | Callus splitting and Regeneration                          | 10               |  |  |
| 5     | Rooting and Shooting of callus using Auxins and Cytokinins | 10               |  |  |
| 6     | Hardening of the tissue culture generated plantlets        | 10               |  |  |

### Semester-VI

### Paper-II (Theory + Practical)

**Course Title: Bio-analytical Techniques** 

Course objective: Students will learn principle and applications of Microscopy, chromatography, centrifugation, electrophoresis, blotting techniques, spectroscopy and autoradiography etc

| Credits: 4+2  Max. Marks: 100+25 (Practical) |                                                                                                           | Compulsory                                                                                                          |           |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|-----------|
|                                              |                                                                                                           | Min. Passing Marks:                                                                                                 |           |
|                                              | <del>,</del>                                                                                              | Total Number of Lectures = 60                                                                                       |           |
| Units                                        |                                                                                                           | Content (Theory)                                                                                                    | Number of |
|                                              |                                                                                                           |                                                                                                                     | Lectures  |
| 1                                            | Microscopy-                                                                                               | ectrical & Electronics) (Compound, Phase contrast, Electron- TEM prescence microscopy                               | 12        |
| 2                                            | Chromatogra<br>chromatograp<br>chromatograp                                                               |                                                                                                                     | 12        |
| 3                                            | Beer's law, C                                                                                             | and Spectrophotometry (UV-VIS): Lambert concept of IR, NMR and mass spectrometry, ne assay; ELISA; Western blotting | 12        |
| 4                                            | Centrifugation: Zonal, Density gradient, Differential centrifugation; Tracer techniques & Autoradiography |                                                                                                                     | 12        |
| 5                                            | _                                                                                                         | sis: PAGE, Agarose gel Electrophoresis aminar air flow                                                              | 12        |

#### **Books Recommended:**

- Berg, JM Tymoczko, JL. Gatto, GJ., Stryer, L. (2015). **Biochemistry.** (8th ed.) W H Freeman and Company New York.
- Nelson DL. Cox MM. (2017) Lehninger Principles of Biochemistry (7th ed.). W H Freeman New York.
- Voet, D., & Voet, J. G. (2016). Biochemistry (5th ed.). Hoboken, NJ: J. Wiley & Sons.
- Rodwell VW. Bender D. Botham KM. Kennelly PJ Weil PA.(2018). Harper's Illustrated Biochemistry.(31st edition) McGraw-Hill Education
- Hofmann A. Clokie S. Wilson and Walker's Principles and Techniques of Biochemistry and Molecular Biology. (2018) (8th edition) Cambridge University Press
- Boyer RF. (2012) **Biochemistry laboratory : modern theory and techniques**(2<sup>nd</sup> Edition). Pearson Education, Inc

- https://ocw.mit.edu/courses/find-by-topic/#cat=healthandmedicine&subcat=spectroscopy
- https://nptel.ac.in/content/storage2/courses/102103044/pdf/mod5.pdf
- https://nptel.ac.in/courses/102/103/102103044/
- https://nptel.ac.in/content/storage2/courses/103105060/Sde\_pdf/Module-7.pdf

- https://nptel.ac.in/content/storage2/courses/102103047/PDF/mod3.pdf
- https://nptel.ac.in/courses/102/101/102101049/
- https://nptel.ac.in/content/storage2/courses/104103069/module6/lec1/1.html

# Semester-VI Paper-II (Practical) Course Title: Bio-Analytical Techniques

|       | Total Number of Hrs = 60                                                                                            |           |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------|-----------|--|--|
| Units | Content (Theory)                                                                                                    | Number of |  |  |
|       |                                                                                                                     | Hrs       |  |  |
| 1     | Gravimetric estimation of barium, zinc, iron, copper, sulphate and Chromium                                         | 30        |  |  |
| 2     | Organic Mixture: Separation of two component organic mixtures (water soluble), systemic analysis of each component. | 30        |  |  |

# Semester-VI Paper-III (Theory)

**Course Title: Microbial Genetics** 

**Course objective**: In this course students will get introduced to prokaryotic genome organization, genetic exchange and its mechanisms, gene mapping, gene regulation in prokaryotes and bacteriophage genetics etc.

| Credits:4 |                                                                                                                                                                                   | Compulsory                   |           |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-----------|
| N         | Max. Marks: 100                                                                                                                                                                   | 0 Min. Passing Marks:        |           |
|           | To                                                                                                                                                                                | otal Number of Lectures = 60 |           |
| Units     | Co                                                                                                                                                                                | ontent (Theory)              | Number of |
|           |                                                                                                                                                                                   |                              | Lectures  |
| 1         | Prokaryotic Genomes  Physical organization of bacterial genomes (Structure of thebacterial nucleoid, Replication and partitioning of the bacterial genome and Genome of Archaea). |                              | 10        |

| 2 | Mechanism of genetic exchange :                                      | 10 |
|---|----------------------------------------------------------------------|----|
|   | Plasmid and bacterial sex, Types of plasmids (F Plasmid: a Conjugate |    |
|   | plasmid', Mobilization of Non-conjugative plasmid, Rplasmid, Col     |    |
|   | plasmid Copy number and incompatibility), Episomes. Transposable     |    |
|   | elements (Insertion sequence and transposons,                        |    |
|   |                                                                      |    |

| 3 | Integrons and Antibiotic Resistance cassettes, Multiple Antibiotic Resistant bacteria, Muvirus); Bacterial Genetics (Mutant phenotype, DNA mediated Transformation; Conjugation (Cointegrate Formation and Hfr Cells, Time-of-Entry Mapping, F' Plasmid); Transduction (Generalized transduction, Specialized Transduction)- gene mapping                                                                                                                                                                                                                                    |    |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4 | Molecular Mechanism of gene regulation in prokaryotes Transcriptional regulation in prokaryotes (inducible and repressible system, positive regulation and negative regulation); Operon concept – lac, trp, Ara operons.                                                                                                                                                                                                                                                                                                                                                     | 10 |
| 5 | Bacteriophages: Stages in the Lytic Life Cycle of a typical phage, Properties of a phage infected bacterial culture, Specificity in phage infection, E. coli PhageT4, E. coli Phage T7, E. coli phage lambda, Immunity to infection, Prophage integration, Induction of prophage, Induction & Prophage excision, Repressor, Structure of the operator and binding of the repressor and the Cro product, Decision between the lytic and lysogenic Cycles, Transducing phages, E. coli phage phiX174, filamentous DNA phages, Single stranded RNA phages, The lysogenic Cycle. | 10 |
| 6 | Bacteriophage Genetics Benzer's fine structure of gene in bacteriophage T4: Plaque Formation and Phage Mutants, Genetic recombination in the lytic cycle, (concept of recon, muton, cistron).                                                                                                                                                                                                                                                                                                                                                                                | 10 |

- Cronan J. and Freifelder D., Microbial Genetics; Second Edition
- Khalifa AE; Fundamentals of Microbial Genetics; Lamber Academic Pub.
- Sundara R.S. Microbial Genetics; Amol Publications Pvt Ltd
- Modern Microbial Genetics, Second Edition; Editor(s): Uldis N. Streips, Ronald E. Yasbin; Wiley Liss, Inc.

### **Suggested online links:**

- https://nptel.ac.in/content/storage2/courses/102103013/pdf/mod7.pdf
- https://nptel.ac.in/content/storage2/courses/102103013/module1/lec1/5.html
- https://ocw.mit.edu/courses/biology/7-03-genetics-fall-2004/lecture-notes/
- https://nptel.ac.in/content/storage2/courses/102103013/pdf/mod1.pdf

### Semester-VI Paper-IV (Theory)

**Course Title: Medical Biotechnology** 

**Course objective**: The course will help the students to develop understanding in the field of medical biotechnology. They will be taught basics and applications of gene therapy, gene delivery methods, xenotransplantation and drug-delivery etc.

| Credits: 4               |                                                                                                                                                           | Compulsory                                                                      |           |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------|--|--|
| Max. Marks: 100          |                                                                                                                                                           | Min. Passing Marks:                                                             |           |  |  |
| Total Number of Hrs = 60 |                                                                                                                                                           |                                                                                 |           |  |  |
| Units                    | Content (Theory)                                                                                                                                          |                                                                                 | Number of |  |  |
|                          |                                                                                                                                                           |                                                                                 | Lectures  |  |  |
| 1                        | Gene therapy Background, types of g for gene therapy, vect adeno-associated viruse (soma-to-germ line barn                                                | 12                                                                              |           |  |  |
| 2                        | Gene Delivery method<br>Viral delivery (through<br>Non-viral delivery, Ant                                                                                | 12                                                                              |           |  |  |
| 3                        | Vaccines & Synthetic therapy Vaccine vectors, nucleic acid vaccines, immune-enhancing technology. Synthetic DNAs, therapeutic Ribozymes, synthetic drugs. |                                                                                 | 12        |  |  |
| 4                        | Xenotransplantation                                                                                                                                       | gy behind it, organ donors, social & ethical                                    | 12        |  |  |
| 5                        |                                                                                                                                                           | herapy and Drug delivery<br>n, cancer & metastasis. Conventional & new<br>very. | 12        |  |  |

- Blick BR, Delovitch TL et al. Medical Biotechnology (2ndEdition). ASM Press
- Nallari P., Rao V. Medical Biotechnology. Oxford Higher Education
- Glick BR & Patten CL (Ed); Medical Biotechnology: Principles and Applications of Recombinant DNA: ASM Press

- http://www.ocw.titech.ac.jp/index.php?module=General&action=T0300&GakubuCD=2&GakkaCD=321503&KeiCD=15&course=3&KougiCD=202103160&Nendo=2021&lang=EN&vid=03
- https://ocw.mit.edu/courses/find-by-topic/#cat=healthandmedicine
- https://ocw.mit.edu/courses/biology/7-349-stem-cells-a-cure-or-disease-spring-2011/
- https://ocw.mit.edu/courses/health-sciences-and-technology/hst-151-principles-of-pharmacology-spring-2005/
- https://nptel.ac.in/noc/courses/noc20/SEM2/noc20-bt24/